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Absiract

The control of autonomous agents in changing environments is an ongoing research effort. In
particular, controlling autonomous aircraft agente in a simulated environment has taken on new
interest as the new Distributed Interactive Simulation (DIS) draft standard evolves into & useful
document and distributed simulations are emerging that implement parts of the standard. Efforts
at the Air Force Institute of Technology (AFIT) focus on imp  .nting a simulation network that

can support interactive air combat and other real-time training needs.

One clement of this picture is autonomous aircraft opponents. These simulation agents can
provide pilots and others with real-time adversaries that can test their skills in various scenearios.
These opponents have typically been human-controlled agents or simplistic rule-based agents that
have little ability to adapt to environmental changes. Both approaches have characteristics that

limit their use in real simulation networks.

This investigation examines the use of a genetics-based classifier system for agent control.
ThLese are robust learning systems that use the adaptive search mechanisms of genetic algorithms
to guide the learning system in forming new concepts (decision rules) about its environment. By

allowing the rule base to evolve, it adapts agent behavior to environmental changes.

In this investigation we first examine the Jearning needs of autonomous aircraft agents, show-
ing how multiple learning strategies are possible and that the best approach is a coherent combi-
nation of these. We then design a control system using a distributed filtering architecture and a
genetics-based classifier system modified to support a phasing-rule niching system based on phase
tags. Finally, a prototype system called the Phased Pilot Learning System (PPLS) is implemented
based on this design and tested within a limited simulation environment. Results from empirical

tests show that this approach is a viable alternative to other control methods.

xi




DISCOVERY LEARNING IN AUTONOMOUS AGENTS USING GENETIC
ALGORITHMS

I. Introduction

Autonomous aircraft opponents are cpponents in a simulated world that can act autonomously
within the context of that world. Such agents can provide a human or non-human pilot with an
adversary to interact with. It can be argued, however, that to provide a realistic opponent, the
aircraft agent must have the ability to “learn”! from its environment, including the other agents
that may inhabit it, and use that knowledge to adapt its actions to the context of the current
situation. Such adaptation is necessary® in long-term scenarios where the ability to update the
simulated opponent externally iz limited or even non-existent, such as during an extended length

interactive session.

If autonomous agents are to demonstrate realistic behavior within the context of complex sce-
narios, they must respond at many levels, ranging from aircraft interactions (as the agent escaping
from an enemy) to executing some form of a mission agenda (such as finding a target and dropping
an ordinance). The varisus learning strategies required to perform this range of actions must be
integrated into the system in a coherent and time-efficient manner if the agent is to behave at these

different levels of interaction as a realistic opponent aircraft.

Thi. investigation examines the ability of learning systems built on genctics-based learning
systems to control autonomous aircraft agents in a simulated environment. We focus on how differ-
ent learning strategies can be incorporated in such an agent controller to enhance its performance

and on the efficiency of such agents in learning to adapt to the needs of the environment. Further,

LA werking definition of “learning” will be presented in the next section. Until then, the reader should treat the
terin “learning” as meaning “the modification of & behavioral tendency [of a system] by experience [or other means),”

as defined in Webster(83:640).
?Except, maybe, in trivial stimulus-response situations where s predefined set of hehaviors is always adequate.
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we generate an interfacing structure that allows the learning system to connect to and control

simulated aircraft agents in differing simulation systems and environments.

This first chapter introduces the abuve areas of investigation and provides the reader with
some initial insight into this complex but intriguing problem. In it we first define the problem
being investigated, then detail the assumptions being made, identify the scope ot the investigation,
and outline the approach and methods being used. We conclude by laying out the content of the

remaining chapters.
1.! Problem Background

This section presents some background on the autonomous agent problem and asome current
efforts at implementing autonomous aircraft agents. More detailed discussions of these issues are

presented in later chapters.

An area of research currently being pursued both at the Air Force Institute of Technology
(AFIT)(29, 39) and elsewhere (15, 39, 27) is that of aircraft simulation. In particular, work contin-
ues in building autonomous agents (self-contained simulation components or entities) that can be
interconnected in a distributed simulation environment (29, 16, 31, 32). These resultant simulation
networks serve numerous purposes. They provide a resource for aircraft pilots to practice their
skills in a non-life threatening simulated environment. They also allow pilots to try maneuvers and
other operations potentially too dangerous to do otherwise. Such practice and experimentation can
increase skill and allow the development of new maneuvers with minimal risk to the pilot. Another
use of multi-agent distributed simulation systems is to testbed ncw aircraft and other systems
before actual construction. These simulated prototypes allow new ideas to be tested and refined
before the actual bendir.g of metal takes place, potentially cutting costs and increasing the quality
of the final product. Yet another use of these simulation systems is in developing and testing new

technology to aseist pilots of real aircraft. One such example cf this is the pilot associate system

(39, 29).
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The key to such an aircraft simulation is a sufficiently accurate model of the objects being
simulated {such as an aircraft) and of the environment in which they exist (such as the epace the
air raft will “ly” in). Such models allow the computer software to describe, explain, and predict
the behavior of the real world counterparts of the various models(37:5). These models vary greatly
in their depiction of these phenomenon in as many ways as there are uses for such models, and
typically they involve various trade-offs that depend or factors such as the aspects of the real
world object that are most importan; to represent, the needed uccuracy of the representations,
and the computer processing capability available. Since humans generally interact in real time
with aircraft simulation systems, these models are concerned with exhibiting realistic behavior
(within the context of the model) in & time accurate, real-time manner. This need for fast (real-
time) system response and the resulting communications bottleneck has been one of the major

limitations to current distributed aircraft simulation systems (29).

Another limitation of these systems is the lack of adequate opponent modeling (29). In many
cases a single user (a pilot) is interacting with the system, typically to practice skills or to train
on various tactics. In these single-user applications, an adequate and challenging representation
of an opponent is needed in order to test the trainee’s various tactics and skills against. These
autonomous opponents are software models of real-world potential adversaries (or any other object
in the simulated world) and simulate the actions and tactics of such an adversary. Generally these
autonomous agents rely on the techniques of artificial intelligence (Al) to “inteliigently” control

the actions of the opponent model.

Some success has been atiained in this area using a hybrid of Al systems However, the
knowledge-based reasoning approaches used to give the models this intelligent behavior have gen-
erally been based on rule chaining systems that have been too processing intensive for on-line use.
This has forced current implementors to develop a compilation of all possible actions and tactics

off-line (which has be called a universal plan within the AFIT community(25)), and then to erncode
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thie information into fixed tables that provide quick on-line access{70). The major limitation of
this approach is that the tactice are, by necessity, fixed and the model can become predictable to
the human trainee. Another problem is the inability of such systems to “learn” (adapt te their
environment) autonomously. Since the actions and tactics are encoded in a table off line, any
improvements to the system generally requires some sort of human intervention. This can become
prohibitively expensive (both in time and resources) to do on a regular basis. Another probiem
with non-learning systems is in their sometimes less than desirable approach to reacting to 0.}
situations not directly addressed by the plan, which can lead to less than desirable consequences
(28). Thue, techniques that can provide on-line learning capability to autonomous agent adversaries
while allowing such adversaries to function in real time need to be considered in such applications

and is a main focus of this investigation.

One can derive a list of desired qualities for a sirnulated autonomous aircraft opponert.

e The autonomous agent system shouid realistically portray the particular adversary that is
being modeled, including short and long-terin behaviors.
® Such a system should act independently with little or no need for guidance from an external

control while the agent is interacting with its environment.

o To prevent predictive responses from creating a disadvantage for the agent which an enter-
prising pilot might expleoit, the system should adapt to the environmental demands placed

upon it in an intelligent but externally unpredictable fashion3.

® Such a system must be able to interact with the existing simulations currently in use using

standard protocols (such as Distributive Interactive Simulation or DIS)(19).

3If the renponse of an agent is indeed the best it can be (i.e. is optimal in some sense of the word), then the
agent's behavior should beat all adversaries in all situations the behavior was designed for. However, back a few
years agc I saw, on the Brittish TV series Dr. Wko, an interesting situation where two robot races were warring,
both meking optimal decisions and waiting for the “right moment,” but neither could make the first move, since
both sides continuously predicted the optimal behavior of the other and countered it. This lead to dead-lock. If &
stochastic process is not used in such a decisivn system, then even an optimal system (if it could be built) could
become predictable (and exploitable), unless it took into account the ability of the opponent to make a less than
optimal move to gain sdvantage in a complex situation. This was the approach arrived at on the TV series - one
side needed to make an intentional error or silly maneuver to confuse the opponent and gain an advantage.
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o The agent needs to fully interact with its environment, including other simulation participants,
in real time (i.e. with sufficiently fast response to react realistically to the environmental
situation).

Ao noted, these are desired qualities. This investigation is concerned with the feasibility of
creating such & system and so all of these desires need not be fally implemented. It is useful,

however, to keep a list at hand that shows where one should be heading.

This investigation thus focuses on how these characieristics might be implemented in a learn-
ingg system based on the genetics-based classifier system architecture described by John Holland(36).

Various strategies of learring are introduced to further define the problem and the possible ap-

proaches.

1.2 Applying Different Leurning Approaches to The Problem

To examine the nead for learning in aircraft systems, it is necessary to first examine what
is meant by “learning” in general. Fo: the purposes of this discussion we define learning as the
adaptation of a learning system to its environment in such a way that it can perform its tasks
better. This definition carries with it many assumptions (addressed in Chapier 2), but it provides
a good working definition for the moment. For this definition to be applicable, the learner must
have some defined set of tasks to do (to provide something to measure) and must bave some means

to interact with some environment that the tasks reqrire it to manipulate.

A set of strategies have been defined to describe the different ways one can learn. These are
rote learning (including learning by implartation of knowledge), learning by instruction, learning by
deduciion, learning by analogy, and learning by induction. Rote learning requires no effort by the
learner, since knowledge iz directly encoded into the learner by some means, bypassing the envi-
ronment. Learning by instruction is very similar, but uses the environment to previde the learner

with the knowledge to learn. Learning by deduction is where the learner applies deductive laws and




approaches to convert knowledge in one form to knowledge in a second form. Converting tables
of temperatures from Celsius to Kelvin and reducing logical relations are both forms of deduction.
Learning from analogy involves the use of similarities between knowledge representations such that
knowledge about one representation (such as an aircraft okject within the simulated environment)
can be used to predict relationships about another (such as another aircraft). Finally, learning by
induction uses generalisation to predict the characteristics of groups of representations. Analogy
is a form of induction, since it involves generalizing the characteristics of one representatior and
applying those generalizations (via deduction) to another. Other forms of induction include learn-
tng by ezamples and learning by observation and discovery. These are more thoroughly addressed
in Chapter 2(6).

We argue that each of these learning strategies are useful in an autonomous aircraft agent.
The rote and instructicn strategies provide a means to load information quickly into the agent,
similar to how a human student uses books and listens to lectures to acquire knowledge in a
relatively processed form. Deduction includes calculations of trajectory and transformatione on
coordinate data. Analogy provides the agent with the ability to reduce the rules it uses to the
environment into a smaller and more general form, allowing more knowledge to be squeezed into
limited resources. Finally, learning by observation (watching) and discovery (doing) provides the
agent with the means to fill in the model that it keeps of the world and provides the basis for
adapting to environmental change. But just as the rote methods (rote learning, instruction, and
induction) provide the starting knowledge base that reduce the initial learning curve, the inductive
methods (analogy, observation, and experi nentation) provide the means to go beyond this starting
knowledge.

The specific form of induction learning used in the implemented learning system of Chapter 5
is based on genetic algorithms (GAs). These algorithms use partial knowledge structures (building

blocks) to build new knowledge relationships they then can try out on the environment. Based on



a stochastic search, they use selective pressure to “weed cut” the less useful potential relationships
from the better ones. GAs may aliow a system to quickly adapt to an unknown environr.zn: by
trial and error. However, they are algorithms based on random chance and so may not converge
at all on a solution. See Appendix A for more on GAs ir general. Chapter 4 details how they are

used in production-based classifier systems to facilitate learning by new rule creation{22).

1.8 Focusing the Investigation: The Rouie Finding Problem

This section discusses an application for an autonomous agent interacting with a limited
environment. First the target environments are described in brief (a more complete description is
given in Chapters 4 and 5), then a specific problem is defined that tests the learning aspects of an

autoromous agent and is used to analygze the implemented test system.

The environments. The first target environment for this investigation is the Distributed In-
teractive Simulation (DIS) environment as currently implemented at AFIT. A developing standard,
DIS specifies the communication protocol between the various simulation objects (aircraft, etc.) on
a distributed computer network. Network data packets! are used by each simulation participant
to broadcast its location and other state data to the others on the network. A common terrain
mapping is used by all participants, allowing any number of aircraft, tanks, missiles, etc. to coexist
in the simulated world. One interfacing goal is to design an interface for our implemented system

to the DIS environinent.

The second system was developed as part of another research effort. It is a rule-based aircraft
simulation in Clips/COOL(31, 32). Entitled “Pilot Decision Phases in Clips/COOL” (PDP-C), this
system executes on Suxn Sparc workatations. One goal is to interconnect this system with other DIS
eimulations via network connections, allowing agents within the PDP-C system to interrect with

agents on the DIS network. A real-time graphical viewing interface executing on a Silicon Graphics

*In the Internet User Datagram Protocol (UDP) standard format used on Unix and other systems.
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Figure 1.2 Environment 2.

workstation system could then be used to monitor the interactions. The PDP-C simulation system
supports four aircraft objects as well as a fifth aircraft specifically designed to be controllable via an
external interface. Interfacing to this external communications port is the second interfacing goal
for the implemented learning syetem and should allow for comparisons of the rule-hbased approach of
PDP-C and the stochastic production system approach of the implemented genetics-based classifier

system we us= as the learning system.

The third interface and environment is an internal test system designed as part of the imple-
mented learning system. This interface and single-craft simulation environmext provides a learning
testbed to davelop the system without the initial overhead of the other environments. The interface
design 1s such that the interface-unique compenents are isolated to a single package of interface

implementation routines. This allows the implemented learning system to train in oue environ-
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Figure 1.3 Environment 3.

ment and then be moved to another environment to test the training. The goal is to compare the

implemented system’s performance in each of these environments.

The teat problem. One of the objectives of this research is to show that aircraft agents can be
constructed that perform a mission autonomously within a changing simulation environment. Due
to time und resource constraints, this is limited ¢{o a feasibility study and is not required to meet
all the goals given in section 1.1, but only to show that such can be met using this approach with

minimal change. {See the later sections of this chapter for other limitations on the target prototyne
system.)

The developed test system is to have the following characteristics.

¢« The learning system is to demonstrate control of a simuiated aircraft in each of the target

environments.

e The learning systein is to perform a multiple-goal task to show that it is capable of controlling

the aircraft and bringing it through an entire mission (sequence of tasks).

o The controlled aircraft is to interact with its environment in a simple but “intelligent” way.

Ideally, the agent should exhibit “realistic” (real world) aircraft behavior within the limits of

the simulated environment.
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o Real-time execution and interaction should be addressed, as the actual iniplementation of
such a controller must interact with other agents in real time.
An autonomous aircraft controller that meets these criteria should be scalable to more complex
tasks. This is examined in later chapters.
For simplicity, only one goal is to be active at a time. Though, in a complex simulation
environment, multiple goals are expected to be concurrently relevant, this simplifying assumption
is needed to efficiently implement the system using the proposed design. Part of the evaluation of

this system includes the effects of this limitation.

The basic test problem, which is further detailed in Chapter 5, is defined as follows:

1. Begin at a location in world coordinates declared to be the agent’s base.
2. Fly to a target some distance away from the base.

3. Drop an ordnance on the target (assumed to be a ground target).

4. Return to the base (starting point).

To add to tie romplexity of the task, the system must avoid contact with any hostile aircraft. If
contact is made, the agent is to basically “ run away” from (evade) the Bogie aircrafi. In other
words, the mission of destroying the target is the primary goal of the system (i.e. the system is
acting solely as a bomber). Further, only minin.al controls (direction, speed, etc.) are given to the

agent to limit the complexity of the learning task. This is another limitation that is analyzed later.
Time does not permit the addition of fuel and other considerations, though such can be added
to the system. Adding other factors, though, increases the complexity of the learning problem and
makes the analysis of performance harder.
Analysis of tiie teat problem. The test problem can be considered that of finding a usable route

from some location to another through a changing environment. Although related to the routing

problem of much fame and which is being studied at AFIT currently using parallel search(17) and
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parallel genetic algorithm techniqes(53), this problem is one of route discovery, since the obstacles

of the route (i.e. Bogie aircraft) are not known until encountered. This forces the system to adapt

the knowledge structures of the system to this changing environment.

i

Further, this problem has multiple objectives that must be accomplished in a possibly chang-
ing order. The system must be able to learn the individual subtasks and later apply this learning
to other missions composed of similar (but not identical) subtasks in differing order. For instance,
the system might learn to drop an ordnance on one location, then evade an enemy Bogie, on one
training mission. Then on a later mission must evade two crafts first before reaching a target at
a different locati. .. The subtasks must be learned in a way that allows the reuse of the training

when it is appropriate to the mission.

Problem focus. This research effort had the following goals:

o Investigate different ways to apply genetics-based machine learning techniques to the control

of real-time opponent simulation systems.

e Deterruine whether applying such techniques can beneficially improve the adaptive perfor-

mance of such systems.
e Determine whether such improvements are maintained in a changing environment.
e Determine how these techniques influence the design of interfaces to the target environments.

e Determine how these techniques can be adapted to a mission scenario that requires the exe-

cution of a sequence of learned behaviors.

o Determine the scalability and extendability of the implemented aystem, including the ease

with which the system can be ported to a parallel architecture to speed up execution

The approach taken by this research is that learning systems are search processes that show
degraded performance as the complexity of the search space is increased. This lead us to defining an

interfacing structure that minimised this search apace for each learning task presented to the system.
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This “limiting of learning” focus is one result of this investigation and is examined throughout this

thesis.

1.4 Scope

This investigation concentrates on three distinct areas concerning autonomous aircraft agents:
(1) the learning requirements of such systems, (2) how genetics-based claesifiers compare to varicus
alternatives available for implementing such systems, and (3) & design that represents one potential
approach to meeting the needs of an autonomous aircraft agent. The need for adaptation in
autonomous aircraft agents is emphasised, and is demonstrated by building a prototype system
based on a genetics-based discovery lesrning system. The prototy; system provides a way to

illustrate and evaluate the concepts proposed.

The two major types of classifi-r systems® were analysed and compared. These systems use
different approaches, however, and comparisons were limited to the applicability of each system to
the target task. No other genctics-based learning techniques were considered, except as noted in
the literaturc review. Neural networks especially are concept learning systems that show promise
in this area, but were explicitly excluded from this study since they are not rule-bassd systems.
Hybrid systems (a mix of the two classifier methods for instance) were analysed, but were not
needed to build the basic system. The availability of parallel implementations of selected systems
was also considered, and played a key factor in determining the scalability of the overall system to

more complex and computationally intensive autonomous agent systems.

Finally, thia is a feasibility study. Since the prototype avetem is a demonstration system, the
created agent is not interded to implement a full set of aircraft agent behaviors. Instead, the goal

18 to design a system that could be scaled to more complex systems based on distributed extention

of the design.

% “Michigan” and “Pitt” - see Chapter 3.
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1.5 Standards

This research used the DIS draft standard, current version (2.0), as a guide to designing the
interface to the simulation network here at AFIT(16). Otber applicable standards include various
software standards relevant to this effort (as presented in the courses noted below) as well as other

AFIT guidelines as appropriate. All efforts are to be documented in accordance with =stablished

research procedures.

1.6 Approach/Methodology

Preliminary. Research through most of the 1993 calendar year was facilitated in related
courses, namely the CSCE 686, CSCE 656, and CSCET790 algorithms courses, the CSCE 692 and
CSCE792 computer architecture courses, and the CSCE523, CSCE623, and CSCE624 Artificial
Intelligence courses. Prototype syztems were built up in these courses and the results used to teat
the feasibility of these techniques in addressing tli. autonomous agent problem. The final system
was determined from this experience as well as the literature search. Availability of software was of
significant concern in this choice. The software design methodologies of CSCE593 and the principles
of Object-Oriented Design (as identified in applicable references(7)) were used in the design as much

as possible. This was limited, though, by the current design of existing software used for this effort.

The prototype system usea a modified “Michigan” system design based on the CFSC-1
public don-ain classifier system written in the “C” language by Rick Riolo of the University of
Michigan(59). The simulation environments were described previously. A test utility was devel-
oped to providec a view of simlation activity using a simplistic vt100-compatible screen on a Sun
workstation. Other plotting facilities, such as a GnuPlot interface, are used to generate output

tracks.




Real-time interfacing to DIS is being pursued independently and so only a proposed design
is addressed®. The design presented, however, allows for later connection to the proposed DIS
interface design via an interfacing layer which can be modified to whatever to map the PPLS

system interface to whatever form the DIS interface takes.

System Overview. The final system developed, called the Phased Pilot Learning System
(PPLS), uses various techniques to develop subpopulations that address .he different behavioral
needs of the agent. These techniques include various niching strategies that promote multi-modal
populations(13) (populations that converge on multiple rule clusters) to develop. These subpop-
ulations of rules species allow a single population to adapt to different types of environmental
situations, with each species of rules addressing a specific need of the agent. A phasing system is
implemented that adds an addi‘ional higher level of population isclation allowing each population
to develop independently the species needed to execute each part of a mission. Although the phas-
ing mechanism isolates the populations, the rules of other populations are available to seed the

learning in new task domains. Chapter 4 develops this approach more fully.

The interfacing between the learning system and the environments use a layered approach
to isolate implementation and promote portability between the environments. All software, except
for parts of the PDP-C interface (which is in Clips COOL (Clips Object-Oriented Language)), are
in the “C” language and are generally portable to other systems (such as a PC environment, if the
networking is available). This includes a “C” interface between the COOL object system and the
CFS-C routines. CFS-C itself is written in “C” using a functional breakdown and is designed in a

n.odular and portable manner, which facilitates system design and euhancement.

% This research is just beginning and is slated for completionin October 84. No docurientation of this effort (other
than verbal communication with tixe resesrcher) is currently available. However, muck of the design specifics of the
interface were workud out to be compatible with the proposed intexface design.




1.7 Materigls and Equipment.

Access to simulation source code and work station facilities were required. Arrangements were
made to use the AFIT/SC Silicon Graphics facilities in this effort. These are multiple-processor
systemns well suited to this task. The nezded software for DIS support is currently designed for
use on either a Sun workstation or a Silicon Graphics system:; however, most of the DIS network
activity is on the Silicon Graphics network, so porting of the implemented system to that network
may eventually be required to network to other ongoing DiS projects. Such porting would allow
the PPLS agent to interact with other agents in a relatively complex environment. This porting

was not done for this research effort.

This research was coordinated with other research on DIS systems being done at AFIT. This
includes the PDP-C research efforts, as well as those working to interface these systems to the DIS
network. I emphasige this since any efforts should benefit from mutual exchange of ideas, as well
as the research opportunities provided by building compatible and extendible interfaces between
these various efforts. Any serious effort to address the implementation of a realistic DIS simulation
network would benefit from suck cooperation among thcse researching different aspects of this

complex network system.

1.8 Summary and Thesis Layout

This chapter has presented ar overview of what is being investigated. Learning strategies
werz introduced that can be applied to problems in machir ~ learni: ; and we have showed that all
these methods have some bearing on the autonomous aircraft agent problem. Limniting a particular
autonomous agent system to only one of these strategies reduces greatly the system’s potential to
react appropriately within the constructs of its imposed environment. For inetance, implanting rote
knowledge in an otherwise inductive-based system allows the system to avoid a stretch of learning-

inductd mistakes that might make the agent impractical in normal usage. We also argue that




a hybrid of these methods must be brought to bare if effective and efficient autonomous aircraft

agents are to be realized.

The autonomous agent problem can be observed from different viewe, depending on the
requirements of the target system desired. For realistic behavior in a compiex and changing envi-
ronment, it is proposed that a learning system must have the ability to learn by experimentation,
observation, und discovery if the autonomous agent is to adapt to the activities of the other agents
in the environment in a way that allows the agent to progress toward its goals without external
intervention. Otherwiae, other agents, some of which may be human pilots, may find weaknesses

in the agent’s behavior based on the predictability of its actions and exploit them”.

The other main advantage of providing the aircraft agent with the ability to learn by discovery
is the potential for the agent to discover and improve on techniques that allow it to better operate
in its environment. Such activity removes much of the burden from a software engineer, since the
learning system: can, in many cases, teach itself. And such discovery learning could reveal new

techriques or perhaps weaknesses in old techniques.

The rest of this thesis is organised as follows:

» Chapter 2 provides a review of the theoretical literature relevant to this effort. It introduces
wnany of +he concepts we build on in later chapters and demonstrates that providing a learning
systern with the ability to use many of the different learning strategies gives the learning

system a better ability to efficiently and effectively interact with its environment.

e Chapter 3 continues the literature review, but focuses on current implementations of au-
tonornous learning systems and agent controllers, their strengths and weaknesses, ard their

applicability to the autonorious agent problem. The chapter focuses also on autonomous

"I must emphasize that even discovery learning systeme make mistakes — indeed, it's the primary way such systerms
learn. The point here is to leam from the mistake and not repeat it (tvo many times). A system that can never
learn from itn mistakee is at & definite disadvantage in an adveraarial environment.




agent behavior and genetics-based machine learnirg, though other methods are briefly men-

tioned.

o Chapter 4 focuses in on the design of a proposed learning system froin a theoretical pcint of
view. The chapter exaraines the different types of inductive learning that can be applied to
(standard or “Michigan” type) classifier systems. Cuver operators and the genetic algorithm
as used in rule discovery are presented, and various ways to limit the “detector” and “effector”
domains are discussed. A new approach to “niche” formation based on dividing the rule
population into partially isolated phascs is presented and serves as the primary mission task

level control echanism in the PPLS system detailed in Chapter 5.

® Chariter 5 presents the details of the Phased Pilot Learning System {PPLS), which is a
modified version of the CFSC-1® classifier system. This chapter outlines how the progiam
was analysis and design and also how the learning system is interfaced to the environments
it can interact with. We emphaaize the use of context limiting and distributed subagents tc
impiement the systern. By making each component of the system simple and loosely coupled,
the system as a whole can be easier to maintain and to scale to more complex systems. It

also is easier tv paralielize.

e Chapter 6 details the internal test environment and reiated tests using it. We shcw that
the system is capable of progressing through the test environment using implanted rule sets.
Then the effects of the discovery operators on effective rule sets and on partiai rule sets
(where some critical rules have been omitted; are examined. Tests are also performed with
completely random rule sets to jndge the effectiveness of the reward system and the discovery
operators in evolving effective rules. A discussion of implementation issues and an analysis

of the environment interfaces is aiso provided.

8 Classificr System in “"C” - a classificr system puckage discussed in Chapter 2 and addressed from a Cesign

perrpective in Chapter 4,




e Chapter 7 reviews the major points of this investigation, including the realism of the test
model, the learning system’s ability to control the aircraft agent and to autonomously learn,
limitations on this learning and what can be done to improve it, and the effectiveness of the
interfaces. The practicality of the system and its scalability both to larger learning tasks
and to more complex environments are also examined. The chapter ends by summarising the
conclusions of this investigation and suggesting areas for further research thai might prove

fruitful.




II. Literature Review

In this chapter we suinmarise and analyge applicable current theoretical literature. First,
we more fully define what we mean by “learning” and present a working definition used in the
remainder of this thesis. Then we provide extensive definitions for the learning strategies presented
in Chapter 1 and apply them to the autonomous agent problem. The analysis shows that all forms
of learning are useful to the development of autonomous aircraft agents. We discuss this issue and

note what happens when cne or more forms of learning are left out of a system.

We also review the autonomous aircraft agen* task and derive evaluation criteria useful to the
problem. The criteria developed are used to guide the design of the prototype systern developed
in Chapter 5. We follow this by presenting some of the basics of concept learning, an area that

is intertwined with inductive reasoning and which is a central idea that flows through this entire

thesis.

Finally, we analyze the autonomous aircraft agent problem as a task of compntational search,
defining the domain space, the solution space and the nature of the operators. We extend this
notion to one of an adaptive search within these spaces. We note that the task of controlling
an autonomous agent can be mapped to the task of searching for valid concepts (decision rules)

describing appropriate actions within the simulated world and then applying them.

2.1 Defining Learning

To examine the need for learning in aircraft systems, it is necessary to first examine what
is meant by “learning” in general. This section presents some definitions of learning and chooses
ore that facilitates measuring the learning taking place in an autonomous aircraft agent. Then we

present a taxonomy of learning in which to view the aspects and needs of the agent.
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2.1.1 The many faces of learning.  To hetter understand what is rneant by learning, we
begin here by looking at some definitions of learning!. The idea of concept learning and how it

applies to the autonomous agent problem will be formally addressed later in this chapter.

As Carbonell, et al., explain(6:3)

Learning is a many-faceted phenomenon. Learning processes include the acquisition
of new declarative knowledge, the development of motor and cognitive skills through
instruction or practice, the organization of new knowledge into general, effective repre-
sentations, and the discovery of new facts and theories through observation and exper-

imentation.

It is no surprise, then, that the types of learning processes that prove most effective for a particular
problem depends markedly on the objectives of the problem. For instance, in applied learning
systems, such as many robotics systems, the objective is to perfect the skill of a system in accom-
plishing a simple or complex, but predictable, task. For other systerns, the objective may be to
acquire knowledge about a task domain either represented as a set of facts to process or, perhaps,
an environmental model to explore. This diversity of task and objective, however, makes the precise
defining of what we mean by learning a quite nebulous proposition. Yet to measure the success of

a learning approach such a definition is necessary.

(ne measure of success used by many is a simple measuring of how well a system improves
as time goes by Howver, saying simply that, as a system improves, it learns, can be misleading.
For instance, Michalski (49:10) notes that, “. . . wine improves with time, but nobody would call
such an iraproveraent learning.” This has focused the definition debate ou finding a more specific
measure of learning, such as one based cn smprovement criterion. Simon(74:25) has come to the

following definitien of the learning task:

Learning denotes changes in the sysiem thal are adaptive in ihe sense that they enable
the system to do the same task or lasks drawn from the same population more efficiently
and more effectively the nezt time.

!The following diecussion is meant to be general enough to apply to any learner, not just to raachine learning

systems.
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This, in essence, defines learning as simply the tuning of a system to a specific task. It also implies
that the efficiency and the effectiveness of the task can indeed be measured, which is not always
clearly the case?. The perspective of the observer might not attribute the same significance to the
various features of the environment that the learner does, for instance. Or the learner might be

interacting in a social situation that guides benavior in ways not obvious to the observer.

Another definition presented by Michalski quotes Minsky (1985)(49:10) as defining (human)
learning more generally:

Learning is moking useful changes in our minds.
but Michalski notes that even Minsky thought this definition too general for practical use. Even
8o, this reflects the view of many that learning is an internal (human?) process and, as such, is

intrinsically hard to quantify.
Michalski himself setties on the following definition:(49:10)
Learning is consiructing or modifying representations of what is being ezperienced.

In this definition, ezperience is defined as any sensory stimuli, as well as any Gedanken (internal)
processes that provide input to the system. Note that the emphasis is on the building of an
internal representation rather than on performance. Michalski further defines (49:11) three criteria
in evaluating such constructs: validity, or the degree of accuracy that such a representation fits
reaiity; effectsiveness, or the usefulness of the representation in achieving the goals of the system
(and, as such, is an indirect measure of performance®); and alstraction level, or the scope of detail

and the explanitory power of the representation.

2.1.2 A tazonomy of learning.  The act of learning has been classified into six strategies(49):

rote learning, learning by instruction, learning by deduction, learning by analogy, and learning by

JAn example of this might be trying to determine how the sometimes quite inefficient actions of one ant of an
ant colony might, in fact, be the most efficient action it can do in that situation to maintain the colony as a whole.
3A formal definition of efficiency, one messure of performance, is given later in this chapter in the section on

concept learning.
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induction (which can be decomposed into learning from ezamples and learning by observation and
discovery). This taxonomy provides a useful framework in which to view the aaionomous agent
problem and is worth examining hers. The following is mainly from Carbonell, Michalski, and

Mitchell(8).

Rote learning and direct implanting of new knowledge. This strategy can be considered noth-
ing more than direct programming, since knowledge is either “hard-wired” into the system or
provided as a siraple database or look-up table. Standard computer programming (coding) is a
form of direct implantation. Memorigation is a form of rote learning. Note that no transformetion

of knowledge is performed in this strategy — the knowledge has to be provided in a form directly

usable by the system.

Learning from instruction. Learning from instruction (or learning from being told) differs
from rote learning in that the learner receives the new information via some external source (such
as a teacher or textbook) and transforms it into an internal form that can be integrated with
previous knowledge. The key difference is that the learner here performas its own receiving, slorage,

and integration while it continues its interaction with its environment.

Learning by deduction. Here the learner draws deductive relations between the data in the
system. This includes knowledge reformulation, knowledge compilation, mac.o-operator creation,
chunking, and other transformations using a data reformulation. Fxamples include the conversion

of a temperature to another temperature scale as well as the chunking of rules as in the Soar
architecture (43).

Learning by analogy. Inductive learning involves the generalizsaticn of knowledge into useful
concepts that can be applied to other situatione outside the iminediate context that the input
data was acquired. Learning by analogy involves two steps. First a generalization is made about
knowledge already existing in the system (induction). ‘T'hen this generalized knowledge is applied

to other, not directly related situations (deduction). This form of learning is imprecise, since the
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generalization may not be completely accurate. Note that learning by being reminded, where stored
knowledge is applied to a situation based on the recognition of some perceived trigger, is a form of

analogy.

Learning from ezamples. This is a special case of inductive learning where the learner must
induce general concepts given a set of examples possibly including counterexamples. Since the
examples may have no direct relation to each other, this form of learning is more general than
learning by analogy. Also, the examples may come from a teacher, from the learner itself (as
when it forms and tries various possible relations between previously acquired data), or from the
cxternal environment (which are essentially random examples since the examples are not controlled
by the learner). Learning by examples is usually an incremental process, with the learner’s internal

data structures being updated after each example, but could be batched process also (all examples

presented at once?).

Note that negative (countering) examples are needed if overgeneraligation is to be minimized.
Otherwise, the choice of examples, and the generaligation process, must be carefully constrained to

permit only the minim.um amount of generalization.

Learning frem observation and discovery. Also called descriplive generalization, this learn-
ing sirategy focuses on regularities and generalities that “explain” observations made about the
environment. Included in this form of learni g are conceptisal clustering (the forminy of object
classes describable by simple concepts), classification construction, equation fitting, and behavior
prediction of objects in an environment. Note that genetic algorithms and empirical prediction

algorithms can be viewed as falling under this learning strategy.

The level of interaction of discovery learning strategier with the environment can be passive,

where the learner classifies observations based sclely on what is seen in the environment, or zctive,

$Some learning systems require s sct of examples be available from the start. For exmmple, neural networks
are generally trained by repeated!y presenting a set of examples to the learning network until an acceptably low
error rate is achieved(57:488). Any system that requires repeated expoture to s set of preclassified examplen can be
considrred a batch system in this context.
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where the learner interacts with the environment and observes the effects of the actions performed.
In the active case, a form of payoff or other guiding mechanism cun be used to provide feedback to

the learner or, alternatively, the learner can determine the desirability of the effects internally.

Of these strategies, learning by observation and discovery typically requires the most induction
on the part of the learner, since little or no guidance is being supplied by the environment itself.
Yet this strategy is also the most autonomous, since, by the same token, the learner demands the
least from the environment. It is this strategy, therefore, that perhaps shows the most promise in

implemnenting an autonomous agent that can adapt to its environment.

Oue can further classify learning by the types of knowledge needed and the structures
maintained(6). These include parameters in algebraic ezpressions, decision irees, formal gram-
mars, production rules, formal logic-bazed ezpressions, graphs and networks, frames and schemas,
and computer programs and o! - procedural encodings. Of these, this investigation focuses on pro-
duction rules of the condition-action type, though knowledge represented in one form can generally
be converted to any of the others if the representations used are general enough. The use of hybrids

of these and other structuzes are also posible, though they are not cousidered.

2.2 Controlling Aircraft Agents

This section looks at how the learning strategies described in the previous section provide
insight into the implementation of an autonomous agent controller. Of interest to this investigation

is the learning needs of such a system and how to best meet them.

Currently many methods are being used to control aircraft agents in simulation environments.
Since the control of an autonomous agent of any kind must use some form of “inteiligence” to select
and guide the actions of such agents, these methods can be mapped to the learning strategies

discnssed in the last section. This section takes a look at some of these mappings®.

5 Au with the previous section, see Carbonell, et al.(8) and’ Michalaki(49) for a good intreduction to the different

strategics of learning referenced below.
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This thesis effort focuses on a rule-based approach to knowledge encoding. The reader should
note, however, that much of what follows is independent of the representation of the knowledge

itgelf.

Rote learning and direct control. The simplest form of control for an autonomous agent
is direct control via a set of control rules. These rules, predetermined and implanted into the
agent’s control structure, allows the agent to react in a predictable way to the current state of
the system. Thus, if the control structure is taken to be a set of rules, where each rule matches a
unique predefined state (based on the state of the environment and, possibly, some internal state
represen: .tion, i.e. memory) and prescribes a predefined action when such a state is detected, then
such a system functions within the confines of a finite automata. Given a sequence of environmental

states, then, the state of the system is completely determined.

The control structure can be represented as an explicit set of rules, but it can alao be de-
lineated as a control program in some programming language, as a network of graph nodes that
each represent a state the system can attain, or even as a collection of circuits that interface to
electronic detectors and mechanical effectors (as in a small robot). What is important is that this
representation effectively map all poseible states that can be discerned into an action space that
is effective in controlling the application®. It is this mapping, from a detected state space into an

application’s action space, that defines the agent’s behavior in the environment it finds itself.

Updates to the mapping that govern and define an autonomous agent with this structure
must be accomplished via some external programming mechanism. In the case of a set of rules,
the updated rules must be loaded by some outside agent that has the capability te either acquire
or create such rules. In the case of a program, some external agent must modify or replace the
code to be changed and, if necessary, restart the application. This process may or may not involve

suspending the actions of the autonomous agent and may or may not force a modification of the

SFor this discusaion, an application can be considered the instantiation of an agent within the confines of a

patticular envircnment that it must function in,
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current state of the system. In the typical case, however, where the instructions to the agent are
essentially “hard-wired” into the system, the changing of the agent’s program must be done off-line,
forcing the agent’s interactions with the environment to be discontinuous and possibly its behavior

te be disjoint (as viewed from the environment).

Learning by instruction. In learning by instruction, the agent’s behavioral mapping is modified
by supplying the agent with information in a form that it can assimilate (convert to an internal
usable form that is integrated with other knowledge previously encoded into the agent). The key
difference between this strategy and the direct learning described previousiy is the addition of an
interface that the agent can use to add knowledge to its knowledge structure while the agent is
still interacting with its environment (i.e. while the application is still running). The information
provided by the supplying agent still must be accurate and specific for the agent ‘o assimilate it, and
no changes other than those dictated by the transferred knowledge are made. Facts and procedures
are memorized, to use a human analogy, and applied as directed in the teachings with no change.
Though selection (refusal of unneeded or unwanted information, for instance) and reformulation
(conversion of information irto a usable form) can occur in these systems, no new knowledge is

formulated by the activities of the learner alone.

In the case of aircraft agents, instructed learning is preferred over direct implantation if the
system must continue to interact with its environment on a mostly continuous basis. This may
be especially important in a simulated environment where long-term activities progressing over a
relatively long span of time, and directly involving the agent, are best not interrupted whenever a

small change to the autonomous agent in question is needed.

Deduction in the asrcraft environment. Deduction can be considered the repackaging of knowl-
edye using logical or other deterministic transformations{49:14). Included here are coordinate sva-
£

tem conversions, predicted flight time processing, and other tasks that require the procesaing of

information by strictly “cookbook”™ methods. This furm of learning produces equivalent or more

2-8



specific formations of knowledge, such as when detected coordinates given in X-Y-Z form arc con-
verted to sphericai coordinates (say, to better calculate an intercept angle) or a specific missile

flight time is deduced via a set of rules (formulas) that calculate that quantity(6).

This strategy also includes the use of logical transformations, macro-operation creation, and
information ckunking, which can assist an agent in handling a complex environment, as well as
the categorising (sorting) of data, as might be done to maintain a data base of known simulation
pasticipants. It does not, however, include the applying of such knowledge out of the context
in which it was created. As such, deduction may be of limited use (besides the transformation
functions above) in aircraft agents when used alone (not combined with some form of induction,

described below)(6).

Analogy. Analogy, or the exploiting of similarities betwzen knowledge structures, is an im-
portant mechaniem in small systems that must deal with complex environments. In a rule-based
system, for instance, analogy can rustantialy reduce the number of rules needed to model an envi-
ronment efectively by finding common substructures (features) between, say, two types of aircraft
and using those common features to create a smaii number of general ruies that apply to both these
aircraft. By combining deductive and inductive inference, the system finds substructures within its
data and attempts to map the substructure nnto a different struciure to predict properties of the

new structure.

Machine learning systems that apply chunks {(subroutines) derived previously to new situa-
tions are performing a form of analogy in that the uses of these chunks i3 being generalized outside
the context in which they were created. These “building blocks” form useful groupings of knowledge
that can thus be used to improve the system’s interaction with its environment. Such systems are

therefore capable of generalizing their moael of the environment to some extent.

A major limitation of analogy, however, is its reliance on previous cases and knowledge to

draw upon. Without such experience or knowledge, there is nothing to draw similarities from,
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which leaves the system to try random actions and #* .mpt to build the experience necessary. In

an ¢ ironment where most objects are unique; this form of learning may be limited.

Inductive learning. The most general learning strategy for an autonernous aircraft agent is
inductive learning. This strategy includes leaining fror examples (either supplied or genersied)
and by observation and discovery. Passive learning (described in the previcus section) provides a
way for an agent to study its environment and build a model of what it perceives. Iu the case
of an aircraft agent, however, a more active approach results froin the ager.'s interaction with ite
environment. Inductive learning allows the agent to categorize and learn from the various causes
and effects present in its environment. For the sake of this research, the active forms of inductive

learning are grouped under the term discove; learning.

Genetic algorithms, search algorithms based on adaptatiou and natural selection, can be used
to promote discovery learning in simplified rule-based systems called classifier systems(36). Many
different architectures have bieen developed showing the viability of classifier systems in various
learning domains. As such tney represent a good starting point in bu .ding a better autonomous

agent control system”.

2.3 Reviewing the Aulonomous Aircraft Ageni Problem

This section reviews the anionomous aircraft agent problem from the perspective of a problem
in learning. We first characterize the environment of the problem. Then a set of criteria are derived

to provide a measure to appiy to the approaches reviewed in later sections.

2.9.1 Levels of Learning in an Aulonomous Aircruft Agent. The autonomous aircraft
agent problem can be broken down into two levels of concern: a low-level reactionary problem

where the aircraft’s main concern is survival in a hoetile environment and a higher-level mission

TSee the later sections of this chapter for more on the applications of classifiers to learning problems. In addition,
an introduction to genetic algorithma and classifier systems can be found in Appendix A.
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execution problem where a set of mission tasks are te be accomnplished within some time constraint®
For simplicity, we assume that these mission tasks are to be accomplished in some defined equencial

order®,

The mission portion of this problem, then, is to step through a sequence of tasks. This set of
tasks, however, will most likely have prerequisite conditions that must be met {e.g. the craft must
be over a target before it can drop an ordnance). This requires the agent to check to make sure that
the conditions of an action are met before attempting the action. It may also mean verifying that
an action had the effect intended (that the ordnance fell on the target, to continue the example).
Thus the actual aeque.ce in which a set of mission tasks are attempted depends on the context of

the environment in which the aircraft finds itself.

The moment-to-moment interaction portion of this problem, in contrast, includes those things
that basically range from annoyances (a moved target, for instance) to potentially catastrophic
surprises (such as the arrival of four enemy aircraft on the scene). Such occurences must be dealt
with for the mission of the aircraft to succeed. In the tase of a moved target, the intrepid agent
must modify its course to move its projected position to the new location; in the case of a surprise
encounter with enemy Bogies, a major change in tactics may be necessary. In a way, these actions
are the same as the mission tasis of above, but with the difference that these are unplanned acticns

and perhaps not directly specified by the mission tasks of the system.

In any event, the successful aircraft agent must handle such situations if it is to successfully

complete its mission in a complex and changing environment. And, though a set cf simple stimulus-

$Real fighter aircraft missions are arguably much more complex than this simple model. For instance, as targets
are discovered or are destroyed by other means, the missions of the craft may change. However, I believe this model
sufficient to portray somewhat realistic behavior within the test environment described later.

® Again, this is a rather imposing simplification of the problem, since the sctual order of task execution could vary
as the opportunities that the craft has to execute them varies with conditions in the environmer.t, Nonetheless, a
real preplanned mission of the sort assumed here would not vary markedly from that represented here. For instance,
the craft might launch, travel through a set of way pointa, perform some mission, then return to its base and land.
Additionally, alternative mission choices could be encoded intc the system, as in resl missions, in case & primary
mission of the agent becume unettainable in some way. As an example, most bombing missions, to my knowledge,
specify multiple bomb drop sites prioritised in some way and allow the crew to select the site based on what is

happening.




respouse rules that ie keyed to the various situations the system finds itself in may be sufficient
to control the craft in all situations (given sufficient definition of the conditions of each state),
the system must still distinguish which rules are appropriate to the given situation (decide, for
instance, whether to fly to the target or away from the enemy aircraft). And this distinguishing
capability must not be forgotten, even if exceptional situations {such as making contact with an

enemy aircraft) only happen on rare cccasion.

£.3.2 Oiher concerns of autonomous agents. Brooks notes that the concerns of an au-
tonomous agent are quite different than thoa of chess playing programs. For instance, the various
functions of each part of a system may each have different criteria in what and how they should
learn. Trying to learn all these functions with one algorithm may be asking a bit much. Also, the
traditional domains of artificial intelligence research isclate the learning system by imposing either
a structured or a very limited environmeni. Autonomous agente must be able to adapt to more
complex domains, #ven though the mechanisms used may be simplistic in themselves. A distributed

approach seems the best attack to the problem.

And this is not without examples in nature to back it up. Animal systems are greatly
distributed systems that have various sensors and preprocessors that provide the core reasoning
mechanism with highly filtered data. A squirrcl, for insiance, does not have to learn how to visually
detect an acorn or discover (at that moment) how to maneuver its arms. It “reasons”!” in terms
of the objects of nut and branch and how moving to a specific location (in a rough way) allows the
gathering of the tree’s fruit. Applying this to the autoncmcus agent problem, it can be seen that
very simple behaviors are sufficient if each agent in the systein (sensors, activators, etc.) provide

the reasoning mechanism with just the right inputs and controls to make the problem “simple”.

Another issue is that of planning, a “higher-level” function that allows an agent to form

sequences of behaviors that allow it to achieve a goal. Agre and Chapman(l) argue that plans are

101If in & “primative” way.
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not necessary for sensible action if the environment provides the cues for the next action. They also
note that plans are best treated as recip=s that represent the activities associated with objects in
the environment, not necessarily a “program” to be executed. As such, they don't always directly

translate into & set of actions for the agent but are just guidelines that offer suggestions to try.

They also note that planning in a changing environment is a continuous interprative effort
and is hard (computationally wise) to do to any depth. ‘This is not to say that planning is not useful
to the agent. If a static assumplion can be made about current environment!!, then sufficient time
(computationally) may be available to look ahead in a useful way. This is very much dependent,
however, on the concepts that remain valid about the environment over the period being planned
for. Plans are assumptions about the agent’s world state and how to best deal with it to reach

some goal.

How io handle a changing environment can be done in different ways(1:29). For instance,
interleaved planners provide the agent with a plan it tries. When it runs into trouble, the planner
makes a new plan for the agent. The problem here is recognizing when the plan is in trouble.
Waiting until something goes really #rong (tle agent is shot down, for instance) may be a little
too late. Related to this is the idea of improvisation, where the agent tries to make the best of the
situation. An alternative is t¢ keep going hack for plans, which assume the planner knows what
it’s doing (has a sufficiently accurate model of the world). In a rough way, discovery-based learning

systems tend to the former approach, while preprogrammed systems to the latter.

Reactive planning uses a differeni approach where the agent presents an environmental state
to the planner, who then chooses a plan to fit the situation(1). A bit ot dispute has surfaced
as to whether this is planning or just reacting. If the sequences of actions proposed are taken

as suggestions, then they formn a plan. However, if they prescribe a set of actions that must be

11 Which I define as sssuming that the objects of relevance in the current environment ¢an be taken as sufficiently
static to sllow the use of planning. For instance, when we drive to work we sssume the roads are as they were the
previous day. A planned routc is therefore quite useful. Now if the road crews emerge on the acene, this assumption

and so the plan may no longer be valid.
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carried out, they bacome more of a macro facility. Even here, however, they represent a plan in
the sense that they predict the attaining of some goal if carried out. And they still depend on the

interpretation of the environment provided by the agent.

Planning 1nay be necessary to perform complex actions in the agent’s environment. The
question is how much, and of what kind, is actually needed. A distributed agent may be able to
perform quite well on a reaciionary basis, if the learning system driving it is given, by the subagents

that process the inputs and outputs of the agent, a simple enough model to deal with.

Indeed, the design in Chapter 5 proposes the use of & highly distributed and loosely cou-
pled model to implement the learning system and its interface to the outside world. This is
nothing less than applying the well-known concepte of object-oriented parallel programming to
simulation(45:179). We emphasise here, however, the need to make the task of each agent (com-
ponent) of the system as simple as possible so that the complexity of the entire system can meet
real-time constraints. This is especially important for the learning system, since learning simple
concepts based on a small input domain space and a small action space is much easier than learning
concepts in much more complex search spaceas. (Concept learning is addressed shortly in Section
2.4.2.) In short, we argue that simple is better, even at the cost of many rather than few agents

(components, interfaces, etc.)!.

2.3.8 Formalizing the autonomous aircrafi problem. We now reiterate the problem de-

scribed above. For this investigation, the autonomous aircraft agent must perform the following:

e Be able to perform a set of tasks defined for the system by some external agent. This set of
tasks will be referred to as the agent’s mission. Instructive learning may be used here, where

the information is passed to the agent in some form from another agent in the system. Or

13This is from a logical perspective. How the syste. is actually implemented on hardware is not addressed.
However, if the inierfaces arc simple enough and coupling in mini:nised, then efficient implementation of the sgents
on different physical processors is possible and can make £ complex applicatior feasible. The communicatior s costs
and routings would have to be examined carefully if distributed computer hrrdware is used, however. We address
this topic again ir Chapter 7.




rote learning may be used, where the rules that determine the goals of the agent are preloaded

into the system.

Autonomously learn behaviors necessary to navigate the given environment and improve
performance on mission operations over time. A mission operaiio- is defined as a particular,
coherent task set that forms part of the mission, such as flying to a fixed point or evading
an adversary. The goal is for the agent to learn efficiently while avoiding catastrophe (i.e.
death). Alternatively, the systern could be loaded with a preliminary set of rules, and so the

task then is to maintain proficiency and possibly improve upon the rules.

Be able to switch between mission operations without “forgetting” how to do a previously
learned mission operation. This capability is necessary to allow the agent to learn from expe-
rience how to perform various mission behaviors and use this learning at a later time. Once
a sufficient variety of behaviors are learned, the agent should be able to perform variations of

these missions in a “skilled” (i.e. “intelligent”) manner with minimal error.

Each of these represents a significant agent ability that would be needed in a real-world example.

In addition, the environment for this investigation needs to have the following cualities:

e Be sufficiently complex to model the real world within the limits of the agent’s perception.

The required behavior should include a reversalproblem to test the ability to retain knowledge
in contradictory settings!3.

e Interface (28 & goal) to the DIS network, either through an intermediary, such as the PDP-C

gsimulation environment, or through a direct DIS link.

13A classic problem used to test classifier systems, the reversal problem trains the learning system on a task using
a set of positive and negative rewards. Then the rewards are switched. The rules in the system are now completely
wrong and the system essentially has to relearn the task from scratch. After multiple switches, however, & learing
system with some form of ccntext-sensitive memory will recognise the switch gquickly and load a set of rules from
memory for the current task, thus reducing the errors made and the time nezded to relearn the task after each switch

(84). It is this type of ability we refer to.
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2.4 Some Definitions

In this section we more precisely define learning in autonomous agents. Then we define what

is meant by a concept, a key idea in inductive models.

2.{.1 The Embedded Agent Model. An autonomous aircraft agent can be viewed as an
agent embedded in some environment (the simulation in this case). This embedded agent can
be decomposed into three components: a transducer that provides the agent with environmental
information and also provides the means for the agent to effect its envirenment, a learning module,
and a planner(14:2 - 3). Real-time interaction between the agent and the environment is assumned

and other agents, such as teachers, are considered just & part of the environment.

Using this framework, we view an agent as a learning-planning system that receives incomplete
information about its environment via its detectors and only has a limited ability to efect that
environment via its effectors(14:3). The learner part of the agent classifies the inputs it receives
and generates the agent’s actions. The planner (if present) can determine and prioritize what
experimente to accomplish next and generally influence the agent’s exploration and reaction to its

environrment

A rational agent is one that chooses actions that maximise the agent’s expected utility, while
a limiled rational agent musi divide its time between this activity and actually =recuting actions.
An autonomous agent operates independently of human intervention or, more specifically, “... it
does not require inputs (except for its initial state) to tell it what its goals are, how to behave,
or what to learn(14:4).” In this context, the learner provides the planner with the information in
whatever form that it needs to maximize the system’s expected utility per unit time't. The task
of autonomous learning, then, is to learn a close enough model of the world in as short a time as

possible to allow the agent to maximise its performance(14:4).

14This definition is similar to that for on-line performance used clsewhere in this document and can be considered
equivalent for this discussion
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What to learn is quite important, since a complex world model may take too long to build
to be effective. There are too many states in a typical real-world environment to classify all parts
of it. This requires the system to focus on what is important in deciding what to do and be able
to ignore the rest of the details of the environment. How the world is represented and the areas
of the world that are focused on to explore are key to determining the complexity of the task and
how well the agent can accomplish it. A rational agent has many ways to learn (observing the
environment, using a teacher, leoking in books!5, etc.) and the agent may have to decide which to

use in any given situation6(14:4).

In choosing what properties of the environment are relevant, an agent sometimes must decide
based on incomplete data. This bias'? implies a tendency of choice when deciding between indistin-
guishable alternatives and is a part of any learning system that does not deal exclusively with 100%
correct facts. The bias may be part of the language of the system, be it a programming language, a
production systern, or other representation. Or it may be inherent in the view of the environment,
such as a fly is biased by its view of the world through faceted eyes or a robot only having auditory

and collision sensors. In any event, the bias is needed to overcome lack of differentiation in the
environment,

Additionally, a bias is needed t» overcome noise in the environment which results in uncer-
tainty in deciding what information was really presented to the systern{14:7). Traditional learning
approaches do not handle such uncertainty well, which can adversly effect how the agent responds
in a noisy environment(14:7).

A bias is essential, however, to learning in a complex environinent, since it is this bias that

allows the selection between alternatives and the eventual generalization of the agent’s models of

the states of its world. A completely unbissed learner could never ~hoose between alternatives and

18Books can be interpreted as look-up tables, etc., from the view of a cornputer-simulated agent

167 his task is generally given to the usually human vystem designer.
1"Which is effectively what we call an inductive bias later, since any decisions not based on given facts generally

incur some form of generalisation or “guess.”
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80 could never generalige its environment!8(14:6). Note that a bias might be inappropriate for a
learning task, or just be compleiely wrong. This is one of the risks that the iearner takes when
confronted with an environment that must be learned. A good learning bias is one that allows

the learner to be right enough of the time to effectively function in dealing with the presented

envircnment.

In short, choosing a proper learning bias, be it by the designer, an outside agent, or by the
system itself, is one of the most significant decisions made in a learning system, especially one such
as an autonomous aircraft agent. Next we more formally define a “concept” as a means to represert

the biased decisions made by the agent about its environment.

2.4.2 Concept learning. A concept can be described as a rule that divides the world into
positive and negative examples(73:3). For example, the concept of “being red,” as Schapire puts it,
“... divides the world into those things that are red and those that are not red.” The “learning” of
the concept can be tested by presenting examples and seeing if the learner correctly can distinguish
the new case. The “universe of objects” from which the learner is presented examples can be called
the domain (or instance space) and each object in the domain can be called an instance of that
space of alternatives. T2 use Schapire’s example, if the domain is “all the fruit in the world,” the

learner’s job is to distinguish red fruit from non-red fruit.

A prediction rule is one that allows the learner to categorize an example. Such a rule is called
a hypothesi- and is said to be consisient with the observed sample if it correctly classifies it into
the right category. The examples presented to the system zan come in some prescribed order, or
they may be randomly selected, as might be the case in a typical environment. In many learning

systems, it is important tha' the system be effective regardless of ithe order in which the examples

are presented.

180ne might argue that doing nothing is a decision (and a bias) in itself and so there cannot exist a system that
has nc bias in an uncertain world. That point, however, is nct impor:ant, or denied by, the current argu:uent.




One can measure the quality of a learning algorithm by locking at its expected performance
on a test. More specifically, the error can be defined as the probability that an example will be
misclassified. The accuracy, therefore, can be defined as the chance that the learner get’s the
classification right(73:5). Thus the goal is to reduce the error of the learning system to a minimal
value, say, within some defired tolerance. We also desire the rate that the system reaches this value
to be as fast as possible, i.e. the system should be efficient. This can be represented as a bound

on the rate of learning (quickness that errors go down)(73:5).

The above model is called the distribulion-free model, since the target distribution (the order
that examples are chosen) has no effect on the accuracy of the system. This model is also called
the probably approzimately correct (PAC) model since the learning algorithm’s hypotheses should
be “.. approximately correct (have low error) with high probability,” and was first introduced by
Jaliant(73:6). A problem with this model, though, is its insistence on the error becoming arbitrarily
small as learning progresses. Schapire makes the point that some acceptable value of accuracy might
be sufficient: say 99.9%, or even 51%. Such a relaxed constraint would make the learning sys em
a “weaker” system, but he argues (and shows) that such systems can be made arbitrarily “strong”
by methods that improve the efficiency of any PAC-learning model. Thus “weak” learning systems,
ones that are not required to (in the limit) become infinitely accurate, can be turned into nearly

“strong” systems that come close to this goal(73:8).

To be more precise, “A clasa of concepts is learnable (or sirongly learnable) if there exists a
polynomial-time algoritnm that achieves low error with high confidence for all concepts in the class.
A weaker model of learnability, called weak learnability, drops the requirement that the learner be
able to achieve arbitrarily high accuracy; a weak learning algorithm need only output a hypothesis
that performs slightly better (try an inverse polynomial) than random guessing(73:13).” The two
forms have been shown to be not equivalent when certain restrictions are placed on the instance

space distribution (e.4. in the boolean function prediction problem the examples presented to the
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system are uniformly and randomly distributed). But this restriction is not always necessary. The
important point here is that epecifying the distribution (order) of examples given the system, the

efficiency of the learning algorithm is changed.

The hypothesis boosting problem is just that of “boosting” the low accuracy of a weak learning
algorithm’s hypotheses(73:14). By filtering the distribution of examples presented to the system,
Schapire shows that hypothesis boosting can indeed be done and that a system that shows even 51%
accuracy can be converted into a system that displays arbitrarily high {say, 99.9%) accuracy. This
can be done by focusing the system’s attention on the harder to learn parts of the distribution, thus

taking advantage of the distribution-free nature of a learning model (assuming the model exhibits

such a nature)(73:14, 18 - 51).

A compression algorithm, if it exisis, can be used to reduce a data set into an equivalent but
smaller one that represents the concepts to be learned(73:15,43). Thus, if such an algorithm does
exist, it is possible to learn the related concept quicker by using the possibly much smaller reduced
set of examples. In fact, for any given data set and concept, the number rules required io fully
define the concept is independent of any sample size used to learn it'®. Further, as Schapire shows,
any learning algorithm can be converted into a compression scheme of this sort, which implies

bounds on the complexity of the problem(73:15).

The idea of compression can be equated to the finding of the smallest logic circuit that
represents a function. So, given a smaller circuit with a smaller number of inputs and outputs, it
is possible to guess the function of the circuit with less tests. Of course, getting the reduced circuit
is, itself, a problem, and an exponentially-bounded one at that. So Schapire’s results arc not as
useful as thiey might be, since he assumes an oracle that can provide this selection of inputs. But

the results de support the idea of spceding of the learniig of a system by presenting the smallest

19 4 concept can only divide the examples in so many ways.




set of distinguishable inputs possible. This idea will be important when the domain of the problem

18 selected next.

Finally, we definc noise to be variations of the sampled data set and malicious noise to be
that noise that generates a misclassification of a sample(73:75). In a robust system, the goal is to

eflectively classify the input samples, even if they are a little noisy.

Note that the previous devclopments were for a two-valued system, such as one using data
represented by the set {0,1}*. Since any other form of representation can be converted to this
form, it can be shown(73:41) that the results are likewise usesble in these cases. Thus, if the input
data set to the learning system is discrete and finite, it is possible to learn a concept related to the

data in polynomial time.

2.5 Adaptive Search

This section looks at how we can define the autonomous agent problem as one of searching a
rule space in an incremental fashion. A key idea here is that all agent problems can be addressed
as learning problems, even though some only use rote or hardwired learning. First, standard gearch
paradigms are reviewed. Next the problem is viewed as one of adaptive search, where the search
apace is adapted to the environment. This is similar to ithe idea of using context filtering as a means
of speeding up concept learning. Then a search space and a solution space are constructed. Then

search criteria are formalized.

2.5.1 Standard heuristic search.  Heuristics(54:3) are “... criteria, methods, or principies
for deciding which among several alternative courses of action promises to be the most effective
in order to achieve some goal.” In any search, heuristics make the decisions between alternatives
Jhat may have obvious differences in potential worth, or may have no apparent difference. A good
heuristic can be defined as one that allows us to find what we are looking for in an efficient and

timely manner. Thus the goal of the autonomous agent problem is to find a goed heuristic that
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allows us to search the space of all possible rules and find these that allow our system to perform
in an appropriate way.

In a complex environment, finding an optimal set of rules becomes an exponentially-complex
task as the number of possible combinations of rules that can be tried over a period of time in
each environmental state grows. This is true even if we limit the tries to one rule per cycle?®
and assume that the number of possible states is relatively small. We can even assurie that the
environmental state is completely defined by the state representation posed to the search system,
which is usually not the case?'. Considering only these simplifications, the number of rules that
link all possible states to all possible actions is still very large. Even with a static environment??,
finding the set of all such rules that best handles our agent’s operations in this environment is, in

general, computationally infeasible in complex®® domains. Thus the need for heuristics to reduce

the space of rules to search.

A heuristic search has four basic components(54:20):

® A symbol structure that represents the subsets of potential solutions (called candidate solu-
tions).
e A set of operations (such as production rules) that modify the symbols in the structure to

produce more refined potential solutions.

A search precedure o1 control straiegy that decides, at any given time, which operation to

apply to the structure.

A state representation that indicates what ia left to search.

3V For now, cousider a cycle to be a discrete unit of simulation time. This will he claborated on in Chapter 4.
2 For example, looking at milk in a glass does not tecll one if it is sour. Other information, not pretented by the

visual senses, is generally needed to tell chat.
22 A static enwironment is defined as onc where, given a specific starting state, a apecific action will always have

the same effect.
3 Complex in terms of the dimensionality of the input search apace.




Search algorithms, such as depth-first search, A*, etc.(54) can be used effectively to find such
rules in a static search space. The problem is that the environment (domain) we are searching for
applicable rules changes as the search progiesses. The heuristica used with these standard search
techniques depend on this staticness to effrciively exclude parts of the search space from the search
that do not look promising. Since the static nature of the search space is only completely valid for
a single time step, such a search would have to be repeated anv time the input domain significantly
changed. Ofr, alternatively, a search of all possible contingencies can be done and supplied to the
agent in rote fashion, which is the approach taken in many real-time applications®t. But that
approach precludes the agent adapting its search {2 rules dependent on the changing domain. For

this reason we focus our attention away from static search methods and concentrate on adaptive

search of the domain.

2.5.2 Adapiive search. John Holland, in his 1978 bock Adapiation in Natural and Ar-
tificial Systems(33) , showed how adaptive search can be used to speed up the process of concept
learning by adapting the nature of the search as the search progresses. Here we formally define
adaptive search and show how it essentially performs the data compression function needed to

speed learning in an environment. Further, we look at how adaptive search can still be successful

in an environment that is constantly changing.

An adaptive sysiem is defined by the set of objects (R, 01, Z, 7) where(35:28)

R is the set of attainable structure..
{1 is the s¢' of sperators.
T is the set of possible inputs.

7 is the adaptive plan which, on the basis of the input and structure at time ¢, determines what

operator to be applied at time t.

" 24§4uch ns those that use a unizersal plan, as PDP-C does(31).
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An adaptive plan is simply a function that maps inputs and a current search structure onto a new

structure(35:23).
(1, R) =R

Tcan be considered as mapping Z and ‘R onto a set of operators in a nondeterministic way.
(I, R) =02

where == { wy, wg, ... } and w; are operaiors.

We also define some other quantities:

T the set of feasible or possible plans.

£ the range of possible environments (uncertainty).
M the memory of the system.

& the heuristics used to select a plan.

The autonomous agent problem can be formally framed as a problem in adaptive search. We

define the eearch parameters as below.

£ ia the vart in the environment tiiat the agent is adapting to.
T is are the inpute received from the environment.

R is the structure undergoing adaptation. In classifier systems, these are the production rules

themselves.

1 are the mechanisms of adaptation. These are the genetic operators in genetic algorithms and

the discovery operators in classifier systems.

M 18 what the agent remembers about the past. The message list and the rules themselves serve

this function in classifier systems.

T are the limits to the adaptive process.
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X describes how different (hypotheses about) adaptive processes arc compared. Fitness is the

form this takee in ciassifier systems.

By choosing an appropriate fitness measure, pg( R), to use to choose possible plans, the adaptive

search can be guided into those arcas of the demain that are the most promising(35:31).

Holland shows that such systems, using genetic operators as their mechanisme of adaptation,
are robust syastems that search cut plans that produce exponentially better results(35:140). He also
shows that such systems can be used to modify classifier-like structures such as in his proposed
broadcast language, a precursor of classifier systems(35:153). Since the search plans are constantly
evolving, they can deal with changing envirorments more efficientiy that & fixed search plan. Indeed,
by modifying the search procedure to select different sets of algorithms as inputs to the learning

system, adaptive search performs a filtering function on the example space.

Adaptive search therefore is a form of concept filtering and this quality is desired in a robust
adaptive search to spesd it up, i.c. learning concepts by focusing on the differences in the envi-
ronment to learn (what divides things into the desired concepts). The genetic algorithin applied
to rule structures focuses on the differences batween useful rules (those that receive nayoff) and
not useful rules {those that gravitate to low fitness). The fitnzss of the rules help to divide the

rules into concepts. Other syntactic criteria may also be used, however, as in specificity of the rule

conditions.

Holland also notes many areas of concern when designing an adaptive system including (1)
the potentiul high cardinality of R(which increases *he scarch space), (2) apportionment of credit
(determining which structures might yield above-average performance), (3) high dimensionality of
pg(which can increase the difficulty of coming up with effective adaptive plans), (4) nonlinear-
ity of pug(producing “false peaks” in performance), (5) search verses exploitation (dividing trials
between exploiling structures that tend te give above-average performance verzes creating new

structures), and () how to use puyoff tnformation to better allocate trials. These are ail issues
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relevant to adaptive search systems to some degree, though not all may be applicable to any given

problem(35:159-180).

2.6 Discussion and Direction

The goal of this chapter was to review the various literature addressing the theoretical aspects
of the problem, and te lay soine ground work for the next chapters. This section reviews what has

heen seen aud offers some reasons for the direction taken in this research.

The chapter began by defining the various strategies that can be used in a learning system.
These were applied to the autonomous agent problem with the result that all were shown to
provide a useful function within the framework of t}-¢ learning system. From here we presented
some definitions that defined the problem as one of learning and as one of finding corcepts (decision
rules) that divide the state space into manageable generalisations. Then the problem was considered

as an adaptive search problem.

A key iaea that wiil be addressed later is that of concept filtering. it was shown that any
learning algorithm’s efficiency could be increased by filtering the inpute of the system to only those
examples that represent interesting cases to the system. Whether represented as a concept filter, a
search heuristic, or an adaptive plan, such input filtering is essentiz] to aliowing a discovery learning
system with limited resources, and one that must process a limited number of examples before a

classification of the inputs, to function efficiently within the targei environmeut.

Further, since any state and any potentia. plan can be represented as an input to a concept
(classification} system that in turn either accepts or rejects the plan based on the current state,
decision systems can be mia-le to choose plans of action in arbitrary complex situations. If these
inputs are filtered to bring their complexity down to within the limiwe of the learning system’s
ability to efhiciently procers them, then such a concept learning system can, it is argued, handle

the decision process in auy autocomous aircraft agent situation. The problem then becomes one of
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appropriate filtering of inputs to the system, instead of building a more complex learning system
itaeif. Distributed agents that receive inputs and pass on filtered outputs to the next level can aid

in reducing the learning system’s search (rule) space complexity to a manageable level.

One probiem not addressed so far is the need for correct filtering. If the examples chosen
by the fiiters is noisy or incorrect, this effect can be amplified by the filiers during the process of
hypoihesis boosting. ! argue that this is a risk that must be taken by the autonomous aircraft

agent contro} system and interfaces to keep the learning task complexity within the limits of the

learning methods.

In the next chapter we review the various approaches that can be used to implement an

autonomous aircraft agent controller. The forus is on how genetics-based adaptive search provides

many of the different learning strategies in one systzm, making them potentially useful in our

controller.




III. Eramples in the Literature

This chapter discusses and analyszes the applicability of various relevant learning systems
found in the literature. We examine various alternative solutions to the autonomous agent problem,
focusing on the criteria developed earlier. These include systems using rote learning, deductive

reasoning, and inductive search.

Rote systems and deductive systems start the review, and these aystems have many of the
qualities we identified {in the last chapter) a8 desirable for autonomous agent controllers, but not
all. We also examine some other systems that show promise. These reviews are short, however,

this they serve to lead us to the selected approach, that ~Qgenetics-based classifier systems.

Animats provide a fascinating view of the autonomous agent problem from a biclogical per-
apective. Animats are simulated life forms that inhabit a simulated world. It can be said that
autonomous aircraft agents in a simulated airspace fit the definition of an Animat. Many ani-
mat systems have been implemented using genetics-based classifier systems. Also, many of the
issues faced by animats are similar to those faced by autonomous aircraft agents in their simulated

environment.

Classifier systems and genetics-based learning are then addressed, detailing the types of clas-
sifier systems available for use with this problem. These probabilistic systems us: biologic-lis+
operations and selective pressure to evolve rule systems that are adapt:d to the environment. The.e
systems have been used in many contexts and have been shown successful in many applications
sitnila to our aircraft agent control task in simulated, though small, environments. It is also shown

that some enhancements to the basic classifier system will be needed to use the system in our

domain.

The chapter ends with an analysis of these approaches, trading off the good and bad char-

acteristics of each system. This analysis supports our selection of genetics-based classifier systems




to serve as the learning system for our controller. Chapter 4 takes off from here and shows how

discovery learning can be implemented in these systems.

3.1 Rote Leerning Approaches

§.1.1 FEzpert sysitems.  Any expert system that interfaces to an outside environment can
be considered a reacting autonomous agent. Most such asystems employ rote learning by receiving
and storing rules and attributes relevant to the domain they are designed for. Sorne sysiems,
such as those built from the Kee expert system framework, also allow for the deduction of facts
and operations hased on forward and backward chaining of facts in the environment, as well as
operations based on probakbility. These systems have been used to implement control and diagnostic

systems. A control system implemented in Soar is one example (discussed in a later section).

These systems are still slow, and generally have limited reasoning capability in real-time
systems due to the overhead of the reasoning processes of the architecture. Research is looking at
the possibilities of speeding up these systems, and many show promise for future use in complex
autonomous agents. Since these systems are outside the current scope, however, they will not be

considered cutside of this chapter.

3.1.2 Pilot Decision Phases in Clips.  The Pilot Decision Phases in Clips (PDP-C) system
ie a rule-based system implemented in Clips COOL (Clips Object-Oriented Language)(31, 32). It

provides for the simulation of multiple agents in a ncar real-time environment?!.

This is a reactionary system where all possible situations have been encoded as rules into the

system and the agents progress from phase to phase in a deterministic 1nanner. Though complex

1The system is based on rule firings, end complex situations can iead to numerous rule firings that siow the
sysiem down. Since its execution varies and is sometimes relatively slow, the system is not considered a real-time
system. Note that by tracing all possible execution paths and deiermining the maximum execution time of a cycle,
and by ensuring that the system (via sufficient processing capsbility) can execuie thu longest exccution path within
the time of one cycle, the tystem can be reinterpreied as a real-time system.



behaviors are shown, they are not adaptive and cannot deal with situations not previously designed

into the system.

The universal plan approach is an effort to encode all possible situations along with plans of
reaction into & rule base that can be used by systems such as PDP-C. Though such a rule base
can never be complete in a world with infinite variables, it can provide a relatively good se! of
behaviors to the agent. The goal is to continuously improve the viability of the plan by enhancing

it whenever weaknesscs gurface in simulations that uae it.

A question one can ask is, “Will the limitations of the simulation environments used for
testing the system make the rule base ‘brittle’, i.e. overly dependent on iis environment for the
plans to be useful in all situations intended?” The addition of some form of on-line reasoning to

cope with and learn from new situations seems to be one approach ic addressing thia potential

deficiency.

3.2 Systems Using Other Learning Methods

This section quickly reviews cther systems related to the autonomous aircraft agent problem.
The purpose of this section is to give the reader some idea as to what other approaches can be tried.
Since we have narrowed the scope of this investigation to using genetics-based classifier systems, no
comprehensive comparisons on applicabiliiy of these systems as compared to our selected approach

is made.

The first architecture reviewed is Soar, a software system designed to be a general architecture
for artificial intelligence. Next, the Pilot Associate effort is examined, which, although intended
as an assistant to a pilot, has many of the qualities of an autonomous aircraft agent. Last, efforts

with MAVERICK, a discovery-based system related to routing in the aircraft agent domain, is

examined.
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3.2.1 Soar. Soar is a software architecture for general intelligence that has its roots in the
General Problem Solver (GPS) efforts of the 1960s, from which it is a direct descendent(67). Soar
has grown and evolved over the years, with new, more capable versions emerging every couple years:
Soar (Soarl) in 1982, Soar2 in 1983, Soar4 in 1986, Soar5 in 1989, and Soar§ in 1992. All versious
up to Soard werc written in LISP, while the latest, Soar6, is written in the “C” programming
language for efficiency and portability. Early versions of Soar used the Xaps2 production system,
while all versions from Soar2 on are based on the OPS5 production system approach. Soar is an
architecture that can be used to implement other systems (such as Neomycin-Soar) that require a

general goal-based reasoning mechanism.

Soar is an architecture for implementing reasoning systems that uses chunking, a basic group-
ing mechanism (cf. chapter 1). Soar focuses exclusively on a problem space, i.e. a space with a set
of operators that are applied to a current state to yield a new state. Thus, all tasks in Soar take
the form of heuristic search. In fact, Soar uses this problem space as the fundamental organization
for all of its goal-oriented symbolic activity, which is based fully on the Problem Space Hypothesis,
and all decisions in Soar relate to searching a problem space (selection of operators, selection of
staies, etc.).(43:467-468)

Soar approaches a problem as the process of searching for a way to accomplish a goal. When,
in the process of searching, Soar discovers that a particular pait of the task cannot immediately be
accomplished, it sets up a subgoal to find a way to meet this need. When all such generated subgoals
(termed impasses(43:471)) related to a goal are finally addressed, Soay then has the knowledge it
needs to continue achieving the original goal, and so it does. This automatic subgoaling is built into

the Soar architecture and provides the basis for many other of its features.

Soar builds knowledge (“learns”) i,y various methods. The “weak methods” of hill climbing
search, means-ends analysis, etc. are implemented via search control productions. Soar exhibits

these seaich actions as part of its architecture without any need to explicitly specify which to use
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in any given case (given that the operators defired for a problem allow states to be evaluated
in an applicable way to such a search). The primary learning mechanism in Soar, however, ia
chunking{42:472). When a solution to a subgoa! problem is arrived at, this solution is formed inio
a “chunk” of knowledge that can be applied as a unit whenever a sim:ilar situation is encountered.
This procese, along with the subgoaling feature of Soar, allows Soar to decompose and 1sarn the

pieces of complex tasks. /

“[Soar] is a systera intended to exhibit general intelligent behavior{71).” By using search
in problem spaces governed by a fixed decision procedure, and only using a rule-based production
system for long-term storage, the authors of Scar argue that knowledge relevant to solving a probiem
can be called upon ‘o supplement the search by merely matching the appropriate rule conditions
in the long-term rule base. By using the OPS5 and its underlying Rete matching algorithm, the
system efficiently finds solutions to the problems it receives as goals to achieve. Nonetheless, the

Soar system carrics a significant overhead and may not be appropriate for real-time problem solving.

One area where Soar has heen shown effective is in explanation-based learning (EBL), in-
corporating rote memorisation and multi-example induction(66). Here Soar is able to generalize
examples to a degree and provide chunks that are usable in other, related contexts. ‘This general-
ization uses the omission of various parts of rules learned to build {via a form of deduction) rules
that apply to more situations than the original rules were learned in. This rrocess is heavily

depeadent on the examples provided to the system, howeve:.

Soar has, among other applicaticns, been shown to be able to conircl a rebot in real time(44).
Called Robo-Soar, the syatem controls a Puma robot arm using a camera vision system to guide
it. It uses an abstract look-ahead planning strategy where planning results by creating an internal

model of the environment (via productions) and applying a sequence of operators to the model

to see if failure is predicted. Planning is used to build up the plan to solve a new problem or




subproblem, then this and any other stored plans can be used to solve similar problems, or parts

of similar probiems.

The work at AFIT(29) has cousidered using the Soar approash to learn (find via Soar’s
search mechanisms) better fighter tactics to employ in the universal plan, a database of tactical
rules. By supplying Soar with examples of tactics that have shown utility in the fighter simulation
environment, the hope is that the Scar architecture will, via the mechaniams discussed above, find
better rules that cover a larger range of situations. Qther simulation systema could then test these
new rules in simulated scenarios that can include simulated combat between autonomous agents. If
agents using the new rules outpexform other agents in the systern, then those rules are considered

for inclusion in later versions of aircraft agents.

3$.2.2 Pilot Associaie. The Pilot’s Asscciate projzct(2), a joint Defense Advanced Re-
search Projects Agency (DARPA)/USAF program, was involved with creating an “associate” sys-
teun that can project the pilot’s needs in all situations and provide guidance and assistance. The
interest here is that the system could also, if allowed, take on gome of the lesser tasks involved with
operating a fighter craft, allowing the pilot to concsntrate on the overall picture of the mission at

hand.

The system addresses many of the pilot's needs as planning issues. This involves the projection
and selection of resources and actions to accomplish eac.: aspect of the mission. These operations
can be considered low level to a pilot who must assimilate all relevant details and react on a
mecment’s notice. To this end, the Pilot’s Associate focuses on “chunking” {in a similar way that
Soar (cf. previous section) does) as a means of “packaging” information into higher-level “chunks”
that the pilot cap understand and use more readily. The key is to give the pilot a set of useful,

relevant choices at tl.e moment they are nceded. The effect is to put back (electronicaily) the back

seater that has been rerroved from the latest fighter aircrafi(30).




.

Reiurning to the focus of this discussion, the architecture used by the Pilot’s Associate is
said to in many ways mimics that of the pilot. Indeed, it would have to if it is to anticipate the
pilot’s needs and present relcvant suggestions for action. It is this ability to guide and control the

systems of the aircraft that make it of interest in the simulation of autonomous agents.

The nature of the system (a hybrid of various reasoning subsystems connected via a comnw-
nications network) parallels in many ways the distributed architecture approach we propose. The
complexity of the subsystems, however, aad the limitations of processing hardware at the time of
testing limited the implementation of a complete aircraft control system. This system is outside

the current design scope, however. The reader is referred to the literature(30, 2).

9.2.9 PAGODA. The PAGODA (Probabilistic Autonomous GOal-Directed Agent) learn-
ing system by desJardins demonstrates how goal-directed learning can be applied to the search for
efficient, on-line behaviors(14). The PAGODA system operates in a simulated robot domain called
RALPH Rational Agent with Limited Performance Hardware)?(14:2). The agent in the simulated
world has the primary task of maximising expected utility. This is done by using & model of the
world to make predictions about it a fixed number of steps into the future. This forward-chaining
look-ahead allows the system to make a best guess as to the results of executing a specific action.

Note that RALPH is a rather complex world® which impacts the complexity of the learning task.

The system distinguishes between learning goals (goals that facilitate learning intermediate
steps to a goal) and planning goals (final goals that the planner deals with). In other words, “A
learning goal is a feature of the world which the agent’s inductive mechanism builds a model to
predict(14:50).” The system needs to be able to predict these intermediate states, to determine

the overall outcome of a particular plan at reaching a desired planning goal. In a way similar to

2The RALPH sirmulation system, which nins on a TI Explorer in ZetaLisp and on DECstations in Allegro Common
Lisp, is an object-oriented system with scheduling software and a graphica display. The system is available by sending
emai’ Lo relph@guasrd.berkeley.edu(14:28)

3Similar in many reapects to those used for animats. In fact, this application qualifies as an animat problen: a¢
defined by Wilson {cf. later in this chapter).
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classifiers, the system stores an expected utility per unit time for each such goal and uses this in the
forward search for the se} of actions with the highest end utility*. Intermediate states are assumed

to have the same utility as the end goal state.

A single-step plan is defined as a triple of form (a, pw, u), where @ is an action, pw is a
perceived world, and u is the expected utility of taking action @ in world pw. Using this single-step
mode’, a jump to the indicated state via the given action will have the given utility. The plan that
achicves this etate in the worid may be composed of smaller feature goals. The choice of what to
do is based on a weighted look at the v.-ility of the previously tried rules that make up a plan (rules

that haven’t been tried are assumed o have gero utility, i.e. neither positive or negative)(14:56).

Empirical tests using PAGODA in the RALPH environment show that learning is taking
place, but that it is not perfectly accurae(14:123), which is expected to be due to the complexity
of the domain. The system is probab istically based and not as much heuristic search, so the
impler-cr.tatic™ .s not as efficient as - . could be. Also, without pruning, the simplistic forward-
chaining search is noted as inef icient and thus another area of further research. The main point
made by desJardins is th ne d for methods to constrain learning: agents must learn: to learn

better(14:153).

3.2.4 MAVERICK. Frezmman Kilpatrick’s MAVERICK(39) in discovery-base« learning
system that learns maneuvers in & route-planning domain, and was developed by him during his
graduate study at the = r Force Iustitute of Technology. The aspecti of this work of interest to this
investigation include the implementation of the discovery learning mechaniam and the parviculars

cf the domain, whica are related to the autonomous aircraft agent p-oblem.

$Actually, the equa: sns used are mor: complex and take into sccount the costs of plauning, of time spent
experimenting, etc. The net utility of learning a goal is then a function of expected costs and utilities that is not
typically Lnear. PAGO]} A simplifies the task of utility asseesment by only looking at the change in utility the resulus
when a particalar learr, ng goal is achieved and ignoring the costs.




The task was chosen to be that of planning a route around a set of threat objects (surface-
to-air missile (SAM) sites, aircraft, stc.), minimising detection by threats while providing the mosi
time-efficient rout= possible. Kilpatrick’s system, written in Common Lisp, uses RIZSIM, a general
purpose combat envirenment simulator (written in “C”(39:3-4)) developed for parallel processing

rescarch at AFIT by Robert Rizza{39:3-5).

Kilpatrick notes that an agenda is central to any discovery-based learning approach. Such
an agenda is used to store the tasks to be performed, as well as their interestingness(39:2-7). An
agenda is useful to guide the search for better solutions (tc the routing problem in this case) to
avoid wasting time in areas of the search space that are less fruitful. In essence, the agenda provides

the input filtering to the system.

The coucepis to be lcarned by the system are variable-length sets of maneuvers composed
of a variable-length series of turns. Thus a solution is a set of maneuvers, each of which is a set
of turns. So, ever though a route wili be generated by executing the derived set of maneuvers,
the search is actually for these mancuver strings. The search space then is the set of all possible

maneuvers for a given scenario(39:3-6).

The systemn used a set of heuristics to control the generation of new maneuvers and another
heuristic to arrange these potential solutions on the agenda list. Maneuvers started with the NULL

(turn-less) maneuver and turns were added o generate the various routes to try.

The implementation used & set of files to pipe the various flows of information between the
various components. A scenario file was loaded into the RIZSIM simulation, which produced an
output file read by MAVERICK. MAVERICK, in turn, generated a maneuver file that RIZSIM

received and processed as well as history files that documented activities.

RIZSIM objects are modeled as generic moving objects that have an initial route and starting

position and velocity vector(39:4-2). A problem with this simulation is that objects ~an’t stand

still and still exist. Kilpatrick handles SAM sites by moving them at a very slow rate. Also,




the interactive ability of the simulation is lacking due to a use of data files to input and output
route data to and from ihe simulation. This interface could be enhanced, in theory, to support a

more interactive apprcach. Many other object attributes are available in the simulation, but not

considered here.

The basic MAVERICK system uses a learring structure that stores interestingness (an integer
assessment of utility), niove (a set of sequenced maneuvers), age (a sequence of maneuver in total
number of maneuvers explored), heuristics (a list of the heuristics used to form this maneuver),
level (the tree-dep 2 of the rneneuver), mar-time (mancuver time in seconds), total-radar-contact
(the total radar contact time (from SAM gites) of the maneuver), radar contact (a list of individual
radar contact times per simulation object), radar-directions (where the radar came from: L (left) or
R (right)), ezec-time (CPU time to test this manenver), child (a list of children of the maneuver),
and parent (the parent of this maneuver). The agenda uses the interestingness to select which

maneuver to test next{3yY:4-11).

The search technicue employed is ma.nly heuristic-guided mutation. ¥ilpatrick notes that
hill climbing is ore tendency of such -~ technique and uses various mechanisins to assist the search,
including maneuvver aging (clder best maneuvers, which are the best of a family of mutated maneu-
vers, are imore likely Lo be near local optima and so are less likely to be searched further), selection
and traneformation heuristics, and ordering h=uristics (the order to apply transformation heuris-
tics). A scenario memnry as well as a longer-term memory are also used to save useful maneuvers
so they can be reapplied at other times in the hope they provide a short cut to differeat situations
in the simulsiion(3¢:419).

Kilpatrick noted some problematic tendencies when MAVERICK is applied to the multiple
SAM site routing problem. Since the sccnario memory st ores potential sub-maneuvers to be tried for

use on other objects in the simulation, a large number of such potential solutions can be generated

and slow the discovery process. Also, since only straight-line radar coverage (the radar coverage if




ne maneuver is taken) is used to index past long-term memory solutions, the applicability of the

stored soluticns varied(39:5-12).

His exploration of the various contributions made by the different heuriatics showed that the
learning systemn could compensate for the loss of one or more guiding heuristics, but that such a

loss increased the number of maneuvers checked(39:5-17). Thias shows promise for the discovery

learning approach in general.

Overall, Kilpatrick demonstrated many of the concepts of discovery-based learning techniques.

Though the sysiem is limited in the ways described above, these techniques can be applied to other

systems to enhance their performance.

3.8 Animats

Animats are artificial animals that interract with simulated environments(80). Animats have
gained notoriely in the computer science, machine learning, ethology (anirnal behavioral science),
and genetice communities because they provide a method to test theories on behavior, intelligence,
and evolution within the framework of a contrellable simulation. Of much interest is the study of
adaptive Lehavior in animats as they react to the sensory inputs from the artificial environment
they find themselves in. This section first reviews what makes up an animat. Then a short overview
of animat research is presented with emphasis on the adaptive nature of these systems. Finally, we

examine how animats address some of the needs of the autonomous agent problem.

3.8.1 Whai are animats?  Animats are adaptive artificial life forms that inhabit simulated
ecvironments. The kev aspects are adapiing, i.e. the animat must be able to continue to function

{“survive”) in the face of = changing environment, and changing, meaning that, as in any real

environment, change is inevitable and must be dealt with by the animat. These quaiities appear in
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Figure 3.1 Viability sone of an animat.

greater or lesser degree depending on the application® that is being implemented. In the robotics
arena, for instance, an animat becomes an autonomous robot that interacts with a real, albeit
controlled, environment (the floor of the robotics lab, for example). What counts is the interacting

of some agent with some usually simple environment in an autonomous and typically adaptive way.

The animat problem is Jefined by a number of state variables that describe the animat’s total
environment®(48). The job of the artificial life form is to keep these 8o called essential variables
(introduc+d by Ashby in 1652) within ranges that allow the animat to continue surviving. This set
of ranges -lefines a viability zone inside a given state space, and the animat can be referenced as
being at a specific point in this space at any given time”. The acimat can be considered adaptive
if if can determine where the borders of thia region are and avoid transgressing them(48:2). See

figure 3.18.

There are many ways to produce this behavior in an animat. For instance, the artificial anima:

could rely on varicus homeostatic mechanicms that tend to return the organism to the middle of

3Remember that we “ave defined (back in Chapter 1} the term application to mean an &gent in a particular
environment that ii mus interact with to perform some function or task.

SFor simplicity, what the animat can sense determines its eavironment, aithough other unscen forces may be at
work. The filtering concept preserted earlier is arcomplished outside the scope of the model.

"To give & natural analogy, this is equivalent to & reindeer in the artic avoiding thin ice that might break. The
deer must also avoid situaticns where & predator might get it. All such lethal situstions exist outside the viability
tene and o define it.

$From the figure in Meyer aad Guillot 91(48).




the viahility sone if it strays tou far from it. Alternatively, some form of sensor mechanisi: comd
warn the animat of its approach to such & lethal border and allow it to react accordingly. Such
actions might be reflez (direct reactions to input stimuli, such as happens in the well known child
ard hot elcve example) or mry irvolve a more deliberated chain of reasoninge. But such reactions
are generaily fast and of an “inutinctive” {pre-prugrammed) nature. Meyer and %uillot nete that
animats that can react beyond the stimulus-reaponse level have the capability to choose the form

of reaction, which can result in better survival potential for the animat(48).

Other skills of use to the animat are a form of memory that can record sequeuces and rela-
tionships encountered and their utility, as well as some form of planning®. Both enhance the ageat’s
ability to handle more complex stimulus, such as circumventing a set of obatacles in an sfficient

manner. These and others are discussed next.

Wilson provides a good introduction to the animiat approach in The Animat Path to A.81).
He alsc makes the point that oune path to more “intelligent” svstems is to start small and work up.
Animats, he argres, are good for studying animal behaviors that can be built upon to eventually
reach buman levels. Of couree this does not address the coraplexity issue that follows all attempts
al increasing the Jdomain space of concept learning systems, which all learning systems, including
ani.nats, are versions of. But the approach can still provide insights into behavior that may provide

better Leuriastics for filtering and categorizing the large volumes of input humans deal with.

3.5.2 A shorl cverview of animal research.  'We now take a quick look at the diversity of
the research on animats. To a good degree, these areas parallel work in other related ficlds already
discussed, as well as in the next section on classifier systems, except that animats have deeper rocts
1 the ethological and biolngicul sciences. Note that this historical review is mainly from Simulation
of Adaptive Behaviev in Animctes: Review and Prospect by Meyer and Guillot(48) - a good review

the reader is referred to.

?A» wzs suggest~d by deslardins cuclier in this chapter.
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One can divide the behaviors of animats into three different categories: preprogrammed,

learned, and evolved. Each of there will he looked at in turn.

Preprogrammed behavior

Based primatrily on rote andl implanted earning ae well as “hardwired” feedback loops and
other “non-reascning” mechanisms, these are the techniques used in some of the earliest animata. In
fact, the only difference between these systems and computer programs (in a learning sense) is the
animat’s need for and existence in an environment. Booth’s feeding behavior model of rats (1978),
for instance, is based on the calculated encrgy flow in to and vut of the animal’s tissuea. “Hunger”
is a result of a hysteresis loop that governe this energy flow(48). Tikewise, another cybernetic model

of drinking behavior proposed by Toates & Oatley {1970) also use a .imilar feedback loop(48).

Exvending this approach, many resecarchers are .. ing to increase the adaptiveness of animats
by providing shem: \with more and more realiistic sensory inpurts based on those of animals. Examples
include vision baszed on a fly’s compourd eys and & tosds visval systein, the dolphin’s echolocation
system being applied to neural networks, and various st::dies of motion coordiunation in animals(48,
79, 65, 47). An ssue that emeryes here as clsewhere is that of credst assignment, i.e. determining
what actions should be credited with the success or failure of a previous situation. This is especially
important when the payoff (perception of auccess or failure by the organism) comes at intermittant
times*?

Deitic representations provide context filtering in that only the sensory inputs relevant to a
task are provided the animat (Agre 1988)(48). An example might be a student studying a t ‘xtbook
at the exclusion of other noises and images around him. This approach also gives rise to systems

that actively conirol their sensory inputs, an approach we will consider later in more detail.

10The credit assignment problem is sddressed in mor= detail in tlie next section on classifier systems, though it is
a problein faced by any system that is not told (directly or indirectly) the utility of en action when it is executed.
Indeed, this is one of the things rn inductivs leerning system generally needs to leara.
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Work with artificial neural networks and other means to simulating natural nervous sysiems
continues, supported by work in the field of neuroethology (Ewert 1980, 1987; Camhi 1984)(48:3).
Meyer and Guillot cite one example of an artificial insect built on a neural network model that
displayed many fly-like behaviors (wandering, edge following, feeding, etc.) showing the simulation
of a sensory-motor system in an animat. One problem to be avoided in such systems is the conflict
when many possible but incompatible actions are requested at once (looking for new food versus
eating the food at hand). This is generally aveided in programmed animats by implementing a
hierarchy of actions where one action {say, eating) takes precedence over another (say, flying in
search of more food). This also highlights the point of default behaviors or behaviors that are

followed when no more pressing need exists (e.g. random exploration)(48).

Robots based on the programmed behavior approach generally depend on detailed models of
the environment they interact in. Robots also can use motor schernas, basic units of motor control,

to build more complex reactions(48:4).

The subsumption architecture of Brooks (1986) is an approach that does not need suc': detailed
world model(48). This architecture wires sensors more directly to action-suggesting modules instead
of an internal model. A program is written by specifying layers of networks of finite-state machines
augraented with various timers and registers. Such approaches allow for the creation of creatures
like Squirt (Flynn, et al.), a small robotic cube that hides in dark corners and ventures out only

when noises go away(48).

Coocperalive agents can be used to build interactive “societies” of animats that work to achieve
some task. These can be tightly coupled into some system, such as in modeling the various senses
and actions of a rabbit, or be distributed and loosely coupled, such as when a group of robots are
sent to the moon to work at building a lunar landing site{48). Another example are modeling insect

societies (Moyson & Manderick 1988; Steels 1987, 1989)(48).

Learned behaviors
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Learning behaviors in animats takes on many forms. Simplest is conditioning where the
temporal relationships of events are used to build a temporal differcnce model of wiat to expect when
the unvironment reaches a certain definable state (in terms of a concept being learned that triggers
on a set of equivalent states)!!. Ancther distintion is that of conditioned stimulus (where the learner
is trained to react to it) versus unconditioned stimulus (where the learner reacts “instinctively”).

The later can be considered the “hard-wired” rules of the aystem, while the former the learned

relationships.

Supervised learning has been used to train the NAVLAB autonomous vehicle of Carnegie
Mellon(48). Unsupervised or discovery learning has been used in many exarnples to train animats
in simple environments. Related to this is reinforcement learning where a gain (payoff) or signal is

generated externally whenever the animat performs “correctly”.

An animat, as it learns its environment, may build a cognitive map of the environment that
is used to direct later aciions. Being able to maintain a model of the environment internally allow
an animat to draw upon this model during tinies of intermittant feedback from the environment.

Such a model also helps to alleviate the credit assignment problem that such intermittant payoffs

generate.

An architecture that has an internal model of the world that it uses to predict real-world
actions is the DYNA architecture (Sutton 1990){48). The DYNA architecture has four basic struc-
tures: a real world it interacts with and provides rewards and punishments, a world model that is
intended to mimic the real world in a one-step fashion, a policy function that chooses the animat’s
actions, and an evaluation function it uses to judge the worth of a course of action. The goal is to

maximige long-term average reward.

In the DYNA model, the animat updates its world model, policy function, and evalutation

function based on interaction with the real world. Experiments on the real world produces hard

11"Chus teashing & system a task is similar to the conditioning techriques B. F. Skinner used on pigeons to teach
them to perform complex behaviors to receive food at the end.
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data used in temporal difference reinforcement learning and experiments on the internal world modei
update the system by r:lazation planning. The algorithm used is related to dynamic programming

and uses a credit allocation scheme similar to the bucket brigade. Considerable success in some

domains has been shown(48).

Another system, called AGAR (Travers 1989), is based on Minsky's Society of Mind work
and uees agenis with condition/action interfaces to perform specific functions in a system when
triggered by sensor inputs or other agents(48:6). Actions are encoded in LISP and so can be nearly

anything programmable. Travers has applicd this model to a biological fish mating context.

Still other work has studied the use of the deitic represcntation paradigm mentioned earlier
to not only limit the inputs to the animat, but let the animat learn where best to focus attention.
This approach is a significant one in that such representations provide a filtering of inputs received
by the learning system based on time. Though not mentioned in this source, such a filtering could
also be used to limit the available actious the system must know about in any situation. Related
to this 18 the problem of perceptual aliasirg, where the internal states of the animat’s world model
don’t distinguish between two external states (Whitehead & Ballard 1990)(48). This can resuit in

any system that filters inputs to another representation for use by another system.
Finally, classifier sysfems fall into this category, but are covered in the next section.

Evolved bekavicrs

Evolved behaviors come about by selective pressures in the environment that force the system
to adapt over time. Adaptation can be the modifying of parameters that control the activities of the
animat, or they might come about via the use of encoding characteristics into genotypic structures
that undergo modifications under selective pressure. Parameter evolving is addressed briefly at the

end of Appendix A. The later is addressed more in the next section.
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Other examples of evolutionary animats abound. For example Bertin's (1990) study of aquatic
animats called paddlers that seek out and eav glowballs(48:8). This is an evolutionary system built

on a neural network that has its parameters mutated to facilitate adaptation.

3.4 ¢laasifier Sysiems

This section generall, describes clursifier systems, rule-based learning systems that can adapt
to their environment, a» shows he they provide cne aliernative to the other machine learning

architectures 3¢ "ar presented.

3.4.7 Overview f classifier systems.  This -ectior gives a bric »ok at the makeup of the
“stardard” classifie syste ms. They general. .se gonetic -=thms as the primary means of rule
discovery F.. an introduction to genet: algoritims -~d hov v are ‘wed in classifiers and other
machine learning approaches see Appendix «. For < mo e ‘etaii'c .. lroc »-tion to classifi~r systems
aer 4ppendix B. For 5 short review of cla. fier 8y tem developi..en. see Apj endix C. Chapter
IV builde from this material ax it details the t: sory o 1 ho. dis. ~ =1, 1sa aing is added to the

PPLS learning system design.

The first system, known s the standa ' or “ Vlickigan :vst- (sec below), is build on the
structure shown below in  igure 2.2'% Thir - stem receives inputs ..om a set of detectors that
maonitor varic .« atiributes of the e. . voniiest These 1nputs are encoded into messages that are
put on a me rage st on . v giv-1 proces- np « cle. Then, t at s e cycle, the messages are
matched ige st the conditiv.  fects f ¢ ~vsifiers (rules) on a classsier list. Those rules that
have thir o aditions ma.~hed cor nete tn ac.ivate their action par st at, in turn, generate either

smma. = 10 awailting effectors the change something in the environment, or new messages for
other clasufiers that gn n to t':  <wesage list the next <+ . Glc n.~ssages (except for the new

actror.-gen srated messages) are the:. purged and the vc'e -peats. New rules are added by running

12Th s - vivem ia discussed in depth in Chapter 3.
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Figure 3.2 The standard or “Michigan” classifier system.
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Figure 3.3 A “Pitt” classifier system.

a genetic algorithm!? and otker . ule yeneration algorithms on the rule population (i.e. classifier
list).

An alternative approach, the rule set or “Pittsburgh” approach, functions more like a 1ule-
prucessing standacd geaetic algorithm than a standard ciassifier system. Thie syatem, shown in
Figure 3.3, uses genotypes that encode eatire rule sets into each population member. Each memter
is then tested on a set of test cases and given a fitness based on how the entire rule set did. In
the simple caoe, the contribution of each rule is not judged. After enough trials, rule sets that are

optimised to the task can emerge.

13Gee Appendix A for an introduction to genetic algorithins.
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There are many arguments about which systein is beiter, and each have their own worries.
These are addressed in Appendix C. The 1est of this chapter focuces on “Michigan” systeme, since

this is the approach selected for the learning system implementation.

3.4.2 Notable Classifier System work. In the last four years or so maiy innovations have
appearcd in hopes of making the Letter classificr. A sampling of these approaches is given here,
including Booker’s Gofer system, Grefenstette’s Samuei sysiem, Riolo’s CFS-C classifier package.
Some other systems of note to this research are then listed to show other important directions
in the research. Each of these systems have qualities desirable for our autonomous aircraft agent

classifier application.
Gofer

We start this rundown of interesting systems (from the view of this investigation) by looking

at Lashon Booker’s Gofer system. Many of the innovations here are offshoots of his 1982 dissertation

a.d later work. We look at both here.

As mentioned previously, the key ideas proposed by Booker are the modification of the match-
ing algorithm to allow more fieedom as to what matches the input messages of the system and the
limiting of the population during genetic operations to those rules that have been recently matched.
These two modifications force the rule discovery algorithms to focus on schema that have shown
some ability to address the conditions that the learning syst~m is currently dealing with since the
active rules have already been narrowed dowwn to those that have applicable condition fields. Note
that the cover operators addressed by Wilson and Riolo essentially generate rules that fili in theas

gaps, though with randomly selected actions.

By trying to find rules that specifically meet the rec.  ements of the input detector etate, the

system is filling a niche in the population that address a specific concept!®. This cluster of rules

'14One assumption here is that all rules that are active are in fact filling the same need. If the rules are general
enough, they may be trying to fill a niche that epans multiple convepts. Evolutiorary pressures are gencrally sssumed
to force the system to evolve the subniches niecessary to let the system learn these concepts correctly.
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that fill a niche addressing a concept is called & species by Booker and is the basic grouping in these
systems(4).

Forming niched subpopulations is similar to the multimodal optimisation that DeJong ob-
served using genetic algorithms in his 1975 disseration work(13). The goal is to build multiple
subp ulations of rules that ea~h address a specific niche in the environment. Even with Booker’s
modifications, however, learning in such systems s not easy if the ‘earch space contains multiple
dimensions anu multiple concepts to be learned. His approach st- t8 to fail drastically once the
complexity of the domain space or action space exceeds some application-dependent value(4). Also,
his work only concentrated on simple stirnulus-response rules. It has not been showr how speciation
can support the building of action sequence chains to address the h.ndling of sequences of related

environmental events.

Nonetheless, niching is a useful tool and will be readdressed in Chapter 3 when the design of

an autonomous agent system is looked at in more detail.

Samuel

Grefenstette in 1991 looked at using Lama .kia: learning in multi-agent environments(28).
Lamarckian learning allows the passing of environ:entally useful characteristics and behaviors to
later generations. This contrasts with Darwin’s theories where only the genetic makeup is passed
to the offspring, undergoing chance variation in the process, and natural selection determines the
chara-teristics that survive. Houwever, as Grefenstette notes, the restrictions on natural systems
neer: not apply to artificial systems. The described research uses Grefenstette’s Samuel system,
wlich has been the focus of continuing efforts in classifier research at the Navy Center for Applied

Reeearch in Artificial Intelligence.
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The system works by passing not only the rules from one generation to the next, but also the
strength of the rule, allowing past performance of the rule to influence the relection of rules later!s.
A bid bias is also intreduced that allows the strength to be varied:

bid = strength®idbies
If the bid bias is zero, then the strengths are ignored during competition (if they are greater than
sero). If between 0 and 1, then lesser-strength rules get a beost in the compziiiion. When the bid
bias is 1, then the bids ar= as in standard classifiers. Greater than 1 and high-strength rules are
favored. Grefenstette implements a maximum fitness value, so a really high bias (.- 10) biases all
rules with strength greater than 1 (the average) at the maximum value. This last setting seems to

give the best results in the examples studied.

Another attribute of Grefenstette’s Samuel system is the use of various learning operators
that allow greater variety in the types of matches made. The operators used in this system can be

decomposed into four basic types: linear, cyclic, structured, and pattern.

Linear and cyclic attributes (condition fields) take on the form of linear or cyclic progreesions

of numbers. For instance, a field defined as(28:305)

(time 48 [6 .. 10])

matches any number from 5 to 10 in that field. Cyclic values act in a modulus way so that

(direction is [270 .. 90])

matches any value from 270 to 360, and from 0 to 90.
A pattern attribute is the traditional condition representation

(visual-tield is O###1)

18T his in the typical case in most classifier systems, so moet systems, using the "Michigan” approach, are thus
Laniarckian. Note, iiowever, that Grefenstette's system is “Pitt".Lased and "Pitt” systeins, by default, don't use

individual rule strengths.




that specifies a bit pattzin to match (with # being a wiidcard matching either 0 or 1).
Structured vslues are basically an enumeration type where the field can match one of the listed
values.

(dietance is [close, 400])

The structure iz that of a tree of values, so, if the value of “close” included “very-close” and
“medium-close”, and these included {100, 200} and {200, 300}, respectively, then the following

would match: very-close. close, medium-ciose, 100, 200, 300, or 400.

Since the Samuel system is not a binary representation system, non-standard genetic operators
are needed to process the rules. These include a specialize operator that tweek the values of a
successful ruie so that its range is more restriced, thus specialiging the rule. A generalize operator,
that takes a partial match'® and makes it less restrictive that includes the given state (sensor
reading). The merge operator takes two rules with the same action (right-han< side) and combines
the left-hand conditicn parts so that the new rule matches the conditions of both of the old ruies.
For example, the rules

it (distance is [3 .. 5]) then (turn is [right])
if (distance is [1 .. 4]) ther (turn is [right])

merge 1o form

it (distance is [1 .. 6]) then (turm is [right])

The delzie operator deletes a rule from a strategy (ruic set). The wutation (randomly change a
rule) and creep (shift the values of a range), as well as the binary operator crossover completes the

operators used in this version of Samuel.

The applications Semuel have been used on are based on a simple model of a fighter aircraft.

These applications were simple evasion, tracking, and dogfighting The inputs to the system (the

'8 Wicn no rule complet ely matches a given inpu. state, Smnuel finds & © 23¢ match” and uses that.
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sensovs) are: tinue (since episode start), last-turn (by the agent), bearing (direction to adversary’s
position), heading (velative direction of adversary’s motior), speed (of adversary), aud range (to

adversary). The actions aliowed by the agent are to change speed and change direction.

In the evade test, the predator being evaded comes in from a random direction and with
greater apeed. With greater energy, though, the predator cannot turn as well as the agent, giving
the agent a chance. The test (episode) ends when either the psey is caught or the predator loses
gome amount of energy, loses the advantage, and gives up. Noise is introduced into the sezsors to
make the learning task of the agent more challenging. The agent improved from 31% (a random

walk) to 82% success after about 50 engagements

The tracking test gets the adversary moving at random speeds and directions with the agent
trying to follow. If the track>r enters within a certain radius of the prey, the adversary turns and,
with a probability based on range, captures the agent. In this task, an initial set of fair rules were
given the agent, since it was seen that not enough evolutionary pressure existed on the agent to
evolve a ussful set of rules for this task starting from a random set of rules. The initial rule set was

20% effective, and the agent improved to about 72% in 50 generations.

The dogfighting test pitted the agent against a rule-based adversary. Speed of the agent
in this case was controlled by the turn being made, not directly by the agent. A cembatant is
considered destroyed if the heading is straight on and the weapon is within range. The agent gets
full payment if it wins, some if it’s o draw, and none if it is destroyed. The results showed an

improvement from the ranaom walk of 40% to about 83% after 50 generations.

Note that the above are means of 10 tests taken on the best individual. Also note that these

aie off-line results, since tests were on the best strategy once the learning #as done.

A few other notes are relevant. The Samuel system showed a window of useable complexity,

i.e. once the situation became too cornplex, the system failed badly. On the other hand, many
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features of the system are useful to the subject of the mission-based autonomous agent that is the

focus of this investigation, including condition encoding und the Lamarckian concepts.

In a later study by Ramsey and Grefenstette in 1993(56), the Samuel system becomes part of
a larger aystem based on a technique termed anylime learning. The task in this system is to contrel
a “cat” tracking a “mouse” in a simulated ¢nvironment. The cat must track the mouse within the
range of ita sensor, but outside the amaller range of the .nuse detacting the cai. In this application,
the agent (cat) can control both speed and direction. An episode lasts 20 time steps, and if the
cat keeps the mouse in range at least 75% of the time, then the critic (evaluation function) of the
learning systemn gives full payment (reward). Else a partial reward is received proportional to the

time the target was successfully tracked.

In this system the monstor looks at the 50 most recent input samples and decides if a change
in tactics is needed. The learning system does this by running its internal simulation to derive
candidzte rule sets and evaluate them. The best 20% of these strategies are then further tested
and the beat one chosen ar representative ~f the learning system. Four narameters of the executicn
system are monitored: the distribution of speed and of turn values (in degrees) of the target, the

radius at which the .arget (mouse) dectects the tracker (agent), and the sise of the target.

When the learning system outperforms the execution system on a task, it is assumed that
the internal rule base is more appropriate to the task facing the execution system and that rule
set becomes the new rule set of the execution system. When the measured parameters of the
execution system deviate from those of the simulation, then another rule set population is loaded
into the genetic algorithm (uting the percentages given next) and the GA is restarted. The rule
sets chosen are in a rule set store indexed by the monitored parameters. The assumption iz thai
a match of average speed and turn values, for instance, indicates a similar situation. The system
is reloaded with rule sets in the following proportions: 50% of these rule sets are best cases stored

away previously, 25% are from the previous populition, 12.5% are default strategies that are always



loaded, and 12.5% are exploratory strategies (new rule sets). The GA is then restarted with the

w rule set population. This is known as case-based snitialization(56).

A key ueed of this method is to be able to characterise the environment using a set of
parameters. This becomes a problem in a more complex environmeat, as is the case with many
claseifier system sirategies. Another major detail of the aystern is the need for an internal simulation
environment that the learning system can essentially *practice on” before passing a rule set vo the
execution systern. A mismatch between this gimulation and the real environment could be disastrous

in a similar way that Pitt classifier systems become brittle as they leave the area of the state space

they were trained in.

Nonetheless, the case-based anytime learning strategy showed significant improvement over
classifier systems that must relearn a situation after leaving it for awhile, a result of their rule sets
evolving to adapt to a new eituation at the expense of the nld rules (or rule sets in Pitt systems).
As the sitvation switched back and forth between ore of high speed and one of high-degree turns,
the case-based anytime learning sysiem came up to speed cn the new situation faster than the
basic anytime learning system without case-based initialization. The system presented at the 1993

International Conference on Genetic Algorithms was storing up to 30 such cases.

These two systems have much applicability in the design of the learning system that is the
target of this investigation. More ia said on this in Chapter 4.

CFSs-C

Rick Riolo’s CFS-C public domain classifier system has evolved to include many of the ad-
vances in the classifier field. A “Michigan” type system, it has many of the features fouud in both
types. Here a look is taken at the various types oi work that Riolo has done with the systern over
the years. Since this system serves as the starting poin® for a large number of aystems (including

the systeru proposed in Chapter 4), we examine its capabilities.

The work prior to 1989 has already been documented above, 80 it is not be repeated here.
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Two applications that coine with the CFS-C package are the Letier Sequence application
described previously(81) and the Finite State FSW1 application(60). Both show how to set up and

use the systemn..

A system of note is the lookahead planning application published ir 1991(64). This system
implements a simple look-ahead mechanism that improves its performance on the Finite State
World One (FSW1) task first proposed by Grefenstette. Otherwise the system is very similar to

the CFSC-1 system previcusly published and previously leoked at here.

The idea is to have the system evolve not only rules that address the curreni needs of the
environmeat, but also rules that can predict the future needs of the environment. For this system,
called CFSC-2, Riolo limita lookahead to one time step (clasgsifier cycle). By creating a new type
of rule that represents Aypothetical activity, and by adding other variations that allow for rule
associations to be formed, he was able to generate a system: that supported stimulus-response-
stimulus predictions; i.e. given a stimulus from the environment and an action in response to that

stimulus, the system could predict the state (stimulus) that would follow.

As in other classifier systems, the utility of a prediction is controlled by the fitness of the rules
involved. Riolo takes the fitness measure of CFSC-1 and divides it into multiple fitness values that
serve different functions. A long-term fitness, S,, i8 maintained, similar to the fitness in normal
claseifier systems. It is updated by a temporal difference method (as in many other classifiers) so
that its steady-state {fized point) value tends to the average payoff the rule receives. This fitness
value is updated every time the rule posts a message, except for transition rules posing hypothetical
responses.

Another fitness value, S;, is updated every step, whether the rule is active or not, and main-
tains the immediate vtility of tha rule ir the current context. When the rule is active, it quickly
gains strength (11 it is useful and receiving payment); when it is inactive, this value is set to tend

to the lung-term average represented by S,.
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Finally, a third fitness value, Sy, is used to judge the predictive ability of the rule. It is 1
for all rules except for transition rules (the rules that predict the next state of the system), where

it then is based on the rule’s success at predicting future events. These three fitness measures are

summarized below:

Su(t+1) = dySe(t) + (1 — du)[R(t) + (g4 Fa(2))]

Se(t + 1) = maz(dy Se(t) + (1 — di)[R{t) + (9: Px(}))])y LueSoft +1))

Sp(t +1) = dpSp(t) + (1 — dp) By
where d, is a constant between 0 and 1, R(¢) is the reward at time ¢, g, is a discount factor on
future rewards, and P(t) is the payment from other rules active before it. Note that P(t) comes

from the specific strength of that type, i.e. P(t) for S, comes from the S, of other rules active

previously. L is another weighting factor and P, is 1 if the rule’s prediction is correct, 0 otherwise.

The bid calculation is also changed so as to take into account the new strengths. This is given

Bi(t) = Sp(t) * S5e(t) + Hi(t)/rnaz;(H;(t))

where H; is the support for rule i at time ¢ and is given by H;(t) = g; * sum(l,,), where I, is the

tntensily of the message, which is provided by the detector interface or ths posting classifier.

The system showed marked improvement over the CFSC-1 system in two simple finite-state
worlds, reaching roughly 80 % accurzcy on this test world once the system was trained (roughly
double the accuracy of the system without lookahead enabled). However, the limiting of lookahead
to only one time step prevented more complex predictions. Also, the genetic algorithm was not used
with the system since, it is assumed, the actions would disrupt the complex ruls wirings needed to
link the various rules together. Howeve:, this approach shows much potential in suggesting ways to

add a lookahead capability to other classifier implementations, and will be readd:essed in Chapter

3.

Other classifier sysiems of note
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Other classiiier systems of potential application to the autenoinsus agent task are sxamined

below,

Bruderer aind Shevoreshkin have proposed a hierarchica! clanssifier structure that addresses
some of the problems inherent in complex learning tesks(5). Though incomplete as cf the Summer
of 1893, the structure encoded subtasks learned into essentially callable mac, s that could be treatad
as rule structures with complex actions at higher levels. These rule sequer ws are learned by the
system as it learns about its domain!?. They did not provide a clcay way to prom te the learning

of such macro structures.

Work in using tags to control the generation of new rules on a classifier population was,
I belisve, presented in one of the working groups at the Fifth International Genetic Algorithms
Conference (1993}, but I have little additional information on this(76). But it is fair 1« note that
many of the ideas presented later in this work {which were developed independently) are chought to
possibly parallel this approach to some extent. Time did not permit a more thorough exarnination

of this source.

8.5 Discussion and Direction

The goal of this chapte. was to review the various alternatives that could be used to attack
the autonomous aircraft agent problem, and to lay some ground work for the next chapters. This

section reviews what has been seen and offers sorne reasons for Lhe directions taken in this research.

This chapter reviewed various systems related to and potentially solutions 1o the autonomous
aircraft agent task. Included was the Pilot Decision Phases in Clips (PDP-C) rote rule system,
the Soar architecture, the Pilot Associate, the PAGODA system, and the missile site avoidance
simulation MAVERICK. Ther Animats {artificial animals) were revi-wed and some applications

noted. Finally, ti.is was followed by a discussion of and some more re. vant examples of genetics-

" The upproach proposed i this thesis
defined. This reduces the problem of deciding hew to break up and remember the subtasks.
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based clagnifier syatems. Each of these systems addresses autonomous learning to some extent, but
each have deficiencies that limit to varying extents their use in the building of autoncmous agente

in the simulated aircraft control domain.

The goal of this investigation is to show the feasibility of building an autonomous aircraft
agent that can react with its environment in real time and learn concepts and related behaviors
about it. This need for real-time learning quickly removes many techniques from consideration,
such as Soar, and the need for adaptive learnixn: points towards genetic algorithma and classifier

systems as a good potential starting point.

Classifier systems, though, now come in many styles and ferme, and choosing the form that
best meets the needs «f the designers is quite a task. This ia the focus of Chapter 4, where we also

present the framework for a new approach that seems suitable to the autonomous agent tsak.
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IV. Buwlding Adaptation into Classifier-Based Autonomous Aircraft Agents

This chupter analyses how adaptation can be added to aircraft agents contrclled via the
classifier system .« tectuxe. Classifier theory is developed, various alternatives are considered,
and the pro :used approach, that of phased control, is presented and examined. The chapter ends

with ar analysis of the proposed phased-classifier architecture.

This che.pier provides the theoretical framnework for the building of a classifier system designed
to control an .wutonomous agent. The design of the Phased Pilot Learning System (PPLS) based

on tiiis analysis is presented in the next chapter.

The reader is assu:ned to have some knowledge of classificr syatems. Appendix B provides a
short 1 “roduction to ihe basics of classifier systeins and their operatioa, including cred:. assign-

ment, ta’s, a1 4 chair foomaticn.

4.1  dayp =+ 1 iasatfier Systems

Ii this s« ion w- bui’ on the basic classifier system (as presented ii. Appendix B), and
introduve rule generati: atrategies. These methods, which include covering operators and the
genetic algorithn  alle  une rule population of a classifier system to adap. to the conditiona of its

envirenmernt.

4. 1.1 iule dss-overy opevators. Allocation of creciit (Buch as via the buckel brigade or
other mechanism) -+ wdapt a set of rules to meet the needs o1 o particulat environment. Tris form
of adaptaion, Loweve: | s fimited since no new rules a ¢ created and so rules that perform acceptably
in the enviroriner  nust alrendy exist in the rule popi-lation for the credit allocation mechanism to
work successiully. ‘thei <018, tor the agent to be able to adapt te any environment, ws muat

somehow bitroduc new rules 1nio the lassifier sopulation.



Rule discovery operators do just that: they look for weaknesses in the current rule structure
and modify the rule population to fill those weaknesses. Such operators inciude cover operaiors,
coupled chain operators, specsalization and genemalization operators, and the genetic algorithm.

Each is discussed below.

Cover operators address the problem of what to do when no rule seems appropriate (fires! in
a given situation. T-vo general types of rover operators used in praciice (58, 60) are the detector
and effector cover operators. These are designed to geuerate rules that “cover” situativns when no

rule matches an input detector message or when no rule is generating an action, respectively.

The cover detector operator is triggered when an environmental state is detected that is not
covered by any rules currently in the system. When this happens, this operator uses the input
state message from the detector to form a rule with & condition that will fire in this situation. The
action is either chosen randomly or is derived from a similar rule that almost matched the input.
This new rule is inserted ‘nto the population and handles (possibly not too well) the previously

uncovered state. (More on this in 8 moment!?).

The cover effector operator is triggered when the syst+m doesn’t generate an action (produce
an effector message). The idea h+ce is that by alwaye producing actions, eventually actions that
productively effect the environment will ke discovered. Without th:is operator, and starting with a
random set of rules, we may never discover & rule (within 1easonable time constraints) that produces
the desired action. This o} ~r: 1or allows the system to explore new actions within the context of

the e.vironment.

Chaining operators include a variety of operators that use tags to link a rule that fires in one
cycle to another that fires in the next cycle. Riolo ard others argue that chains aie nzeded to create

complex, time-synchronous behaviers in classifier syctemns(58, 36). Chains operate by generating

'For the reader that can’t wait, the fact that the situstion ie now covered is oiviously not enough, since the
generated rule could he useless. An we will sre in & ;noment, the genetic algorithm is used to increase thie fitness and
utility of thiese ruies. We are cfiectively just seeding the populaticn for the GA
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messages that trigger later rules to fire, hopefully at an aruropriate time for such a firing. One
problem with rule chains, however, is in finding them, since finding many rules that meet a specific
criteria is many-fold more difficult than finding just one rule, this specific criteria being that one
must trigger, and set the stage, for the next. Another problem is maintaining such chains, since
the genetic algorithm tends to rate rules on their independent fitness, and not the fitness cf the

¢’ .amn they belong in. Riolo addresses these problems, though not completely, in (58).

Although the above methods apply parts of previously developed rules to new situations, and
hence perform some levels of infezence, the primary inference engine in classifier systems has been
the genetic algorithm (GA). GAs use parts of high-fitness rules (i.e. rules thai have been shown
useful in the past) to piece together new rules with potential worth. GAs are stochastic processes
that are not guaranteed to produce successful resuits, su-h as a properly U:'nded A* algorithm
would(54). However, they can be fast in comparison (polynomial verses exponential computation

time) ind are well suited to the rule discovery task?.

In ge. etics-based classifiers, the rules are encoded as binary strings from the alphabet {0, 1, 3¢
}. This notation allows the rule to be divided up into smaller units or siwrings that can be operated
on via genefic operators such as crossover (swapping of subsections) and mutation (random small
changes within subsections). If we add a selection operation that chooses the hLigher-fitness (better
performiug) rules to participate in this process, then the forces of natural selection weed cut the
less fit rules (they get replaced with the offspring of the selected rules) and lead to an overall
increase in the utility of the rule population. Riolo has shown (62) that G As, when used with the
cover ojeratora just discussed, can lead to rule populations that can handle the task of savigating
a learning systern through the environment. These operators complement each other in that the
cover operators provide the raw genetic material and the GA uses selective pressures to evolve this

into useful ruies of high fitness.

1See Appendix A for more on the theory behind genetic algorithms and some exaniples of their use.



The genetic algorithm requires 2 fitness measure to judge how well a ruie in the population is
doing. In this simple case, the credit allocation algorithm provides this directly. The last chapter
raentioned the profit sharing epoch-based method, and this has been shown to be effective in many
situations (see Section 3.4 for more). However, this investigation concentrates on the bucket brigede

clgorithm (BBA) introduced their and described in Appendix B.

4.2 Limiting Contezt, or Preveniing Premalure Convergence in Multitask Environments

Two of the major problems in using classifier systems to search a rule space is premature
convergence onto rule sets that are far from optimal and lack of convergence onto any useful rules
at all. The first can be caused by a population that lacks the building blocks to build better solutions
for the genetic algorithm to try. The latter can result from a population that is too diverse for the
algorithm used, providing the probabilistic search for suitable building block combinations with too
large a domain to effectively search. Both of these situations can be addressed in terms of input

filtering to the learning algorithms, which is the topic of this section.

4.2.1 Search space limitation. As was discussed in Chapter 2, the use of a filtering
mechanism to contro! the examples presented to a learning system can sustantially improve its
performance, turning a “weak” concept learning system into a “strong” learning system. This
filtering process equates to limiting the domain of the search space to those examples that best
illuminate to the learner the concepte to be learned. In a way, such prefiltering can he thought
of as ar example of learning from a teacher. Indeed, Schapire refers to such an exampie filter
a8 an oracle{73:115), implying this relationship. The problem, of course, is that such functions
are themselv:s exponential problems in the limiting case. So the task is to find such a filtering
function that operates in polynomial time that also promuotes faster and more accurate resuits in

the probablistic learning algorithm.



One significant and relatively simple way to limit context is to filter the types and ranges of
the detectors that the cystem receives environmental inputs with. This can be done in many ways;

we enumerate some of them below.

Choose relevant inputs. This first filtering method simply states that the learning system
should be given only those sensor inputs that are needed. If the types of clouds in the sky are
not important to a submarine agent, then there is no need to funnel this information through the
agent’s input interfaces. Arguably all inputs are of potential relevance, but supplying too much
information prevents the system from effectively learning the behaviors it really needs to survive

in its complex environment.

Choose ranges on inputs that are as limited as possible. I{ a sensor’s output is being monitored
to detect the direction of a light a robot is to move to, then reporting tae direction of the light to
seven digits of accuracy may be inappropriate. If one digit of accuracy is enough, then the input

can be filtered by the interface to supply just that information useful to the learning system.

Discretize the range when possible. Continuous (analog) inputs from sensors requires some
form of determination as to which input value ranges are useful and which are not. Thia process is
another level of concept learning that the learning systemn must deal with. Providing a discretised
set of inputa, such aa { left, right, ahead, behind } for the light tracking problem above, renioves this
level of concept formation frem the system and allows resources to be applied to other, higher-level

leataing.

Provide only inputs relevant to the current contezt. Related to the first filtering technique,
this one takes selection a step further by noting that not all inputs are relevant at all times. Rule-
pased syatems (such as PDP-C - see Chapter 2) use rules that trigger off of limited subeets of the
possible facta in the environment. Otherwise all rules would have to check all sensors at all times,
leading to an exponential number of checks (rules). The expert system designer builds in to the

system this use of context limiting, noting that not all inputs are relevant once other inputs are
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known. Thus an agent that is evading an enemy does not need to consider the traffic patterns in
a busy intersectioa bzlow {unless it might need to land in that very intersection). How to choose

what to look at and who chooses it are important issues to address here.

4-2.2 Resirictive mating.  Restriclive mating policies were proposed by Booker in his 1982
dissertation and were described in Chapter 2. In short, this method limits genetic search operations
to those population members that are currently active as a result of matching a message or messages
on the message list. He argues that classifiers that are active are more likely to be applicable to the
current situation than other classifiers in the population, and that these active classifiers contain

more useful building blocks than a random selection from the population would3.

In Booker's systems, he makes a number of changes to the basic opcration of the classifier
system. First, he breaks the environment into two distinct parts: an environmental model part
and an action model part. Inputs from the environment are received by the environmental part,
which processes (filters) these messages and presents a derived suzte to the action part of the
system. These perceived state messages are then used by this part of the system to determine
an appropriate action for the given state. Thia separation of sensing from action allows a level of

abstraction (i.s. classification of inputs as concepts or objects) to develop within the system.

Another modification he makes is adding a resirictive mating policy that restrictu genetic
operations to only active classifiers. To enhance the mating populations he implements a matching
score that allows rules that elmost match a set of messages to partially fire. Though this approach
adds an extra level of complexity to the matching operation®, it allows rules that are close to

provide genetic material into the mating pool. This approach, however, haa problems when applied

3See Chapter 2 for more on Booker's apecific systems. The current discussion will concentrate on the techniques

he uses.
YTo count up the number of matching bits and calculaie the match score.



to problems requiring chains of actions to form, since such a mating policy only looks at one link

in the chain at a time, and provides no method to link these restricted populations together®.

4.2.8 Triggered memory. Another way to limit the effects of the discovery algorithms on
the rule population is to save away the active rules of an epoch® into some form of “long-term”
storage and call thern back when a similar situation is encountered. Many questione arise, especially
how to define when a set of rules is “worthy” of being stored as an environmentaliy adapted set

and the triggers used to determine when that set of rules is again useful.

One example of this approach is Zhou’s Long-Term Memory Classificr(84). This system was
designed to handle the reversal task where an agent in an environment finds the sources of reward
and punishment suddenly reversed. Since the rule population is now laded with the wrong rules
for the task, the basic classifier system now must learn a new set from scratch. Zhou’s system was

designed to save the old rules in a long-term store and bring them back when the situation again

reversed.

Zhou used what he called descriptors to classify th knowledge saved in the rule store”. A full
or partial match to these descriptors then could be used to trigge: the injecticn of a subset of rules
(learned previously) into the existing rule populat.on. Thus, after a sufficient store of rule sets are

stored and categorized, the reversal task becomes relatively simple.

Zhou did rot address many issucs, however, and did not implement a system usiag them
(0 my knowledge)®. His system assumed that tasks could be distinguished and that the classifier
system only had to deal with one task at a time. In a complex envirorment this may not be the

case. Also, he gave no guidelines cn how te choose descriptors in such complex situations. Xnwever,

5Booker's work focuses on stimulus-response systems (with an added level of sbstractionj sc does not address

this issue.

8The definition of “epoch” is slightly different here in that payoff might not be involved in determining its cycle
boundaries. In fact, one might swap in a new set of rules whenever no progress is bting made.

71 will use the term rule store to refer to the long-term memory in such systems. The reacer should not confuse
this with the short-term store represenied by the changing sule population of the standard classifier system.

$Interestingly enough, Zhou was being advised by Grefenstetie durii ; tnis peried, who was involved in a similar

system rresented next.
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many of the concepts in thie paper are still worth applying to the autonomous agent problem. More

on this later.

Davis, Wilsca, ard Orvosh use a similar scheme i a new version of the BOOLE system, a
one-st=p classifier® ihat clacsifies boolean fuinctions given a set cf inputs and resultant cutputs(11).
In addressing the muliiplezer prodlem!®, they used a classifier system with an added mcmory Jhat
stored “examples”, u list of triples of the form (weight stimulus responee), where weight is a weighing
factor of the tripple’s usefuincss and the other two values the input and output of the example.

Memory was limited to a fxed number of exampies. The systemn performed the following steps:

1. Read an axample from the environment.

2. For some number of cycles, select probabiiistically by weight examples from sterage. Present
thess to the classifier and then run the genetic algorithm to modify the classifier rule popu-

laticn. Decrement the weight of the mule store example.
3. Repeat.

So rule examples are tried a number of times based on their relaiive weights, each example training

the classifier system to some extent.

This system showed improved results on the function classification task. but uses a single
task system similar to Zhou’s and is only partially applicable to a.itonomous agents in a cheaging
environment. It also nad the advantage of avoiding the descriptor issue by just trying all examples
in proportion to past performance, but this approach ie of marginal use if external trialg are limited

and an internal simulation | world model) is not available to try the examples on.

Grefenstette’s Samue! sysiem discussed in 3.4.2 (page 3-22) looked at a similar approach to

allow a simulated cat to track a simulated mouase in differirg situations(56). This method uses a

YA one-satep classijier provides output on the same step as presented with the triggering irput and uses no
chaining.
1¢ A standard problem in concept classification circles whzr» some of the inputs to a function select which bit of the
remaining inputs is passed to the output. Since it is not based on & specific easily.derived mathematical relstionakip,
it proves to be = good test problem for classifier systema(11).



moniinr o select when to load in a set of rules based on various environmental parameters that were
assur. ud to descrike the current state of the environment (such as the speed of the mouse and how
often it turned). The system depended on this set of characteristics to be uniaque enough to identify
the situation. In many environments this is not possible, especially those where the significance of

the various detector inputs varies over time (as different tasks are to be accomplished, for instance).

4.2.{ Hisrarchy-building systein:. Somr classifier systems have tried to address the com-
plexity issue by building bierarchical levels into the systems. These systeme chunk information
into essentially macro form where it cii be recalled as needed {i.e. when its trigger conditions are

matched) and used at a later time

4.2.5 Phasing - another approach to restrictive snating.  Anothe method!! hinted at in
the literature and discussed on occasion at conferences(76) is the use of tags to zestrict mating.
The idea is simple enough. Each rule in the population is assigned a set of tags that represents
its phase of activity!?. The phase tag acts as a normal tag, nreventing the rule from matching
messages outside the context of the rule’s phase. Thus each phase forms a cluster or family of ruies

that are active only during their phase.

Each condition_ action. and message field in this approach have the same encoding, allowing
action messages to be fed back to the message lisy as in standard classifiers. Besides the typs field
that determines the type of a message (from detector, action generated, effector destined), two
new fields are added: phase and new phase. The phase field |7  iotes the phasge context of this
message. The new phac s field is discussed below. The type and phase fields are typically under

control of the detector interface in ti.at these fields are provided by the interface.

The detector irterface is modified to encode the phase actomat.cally into the messages being

received. This provides a locality mecliianism controlled by the detector interface 'The current phase

" The material presented here is primarily that of the author and so has no specific references.
137This tag shiculd not be conf zed with the chaining tags discussed in Appendiz. . Those tags can be considered,
and are implemented here, as separate ficids within the encoded rule.
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is changed by the syetem using a special action operation called PHASE. The operator operates
like the standard pass-through operator, except that the new phase field of the action part of the
rule is used to detertaine the new phase. This allows the rule poptilation to control the current
phase of the system and switch context (rule populations) on cue from external (detector) events.

The potential for triggering phase rules off of internally generated messages is also possible.

The system is further modified to limit rule selection during discovery operations to only those
rules within the current phase. The assumption here is that rules within a phase form a niche that
addresses a specific task of the rule processing systern. Note that this niching mecharism is separate
and thecretically compatible with the active message restricted mating policies of Booker(4). Thus
it 18 possible to develop subniches inside the phase niches. The two functiuns modified are parent
selection and selection for rule deletion. Otherwise the discovery algorithms work as in the standard

system.

This approach is useful in rituations where a set of predefined tasks must be handled. Each
task is given a phase and the sy:tem then jumps between phases as PHASE operator rules detect
mission changes. The approach is siinilar to the phasing in PDP-C(31), but the phase transitions

and the contents of each phase’s niche are modifiable by the discovery algorithms.

A further enhancernent is the creation of a REWARD operator to allow the rules to essentially
pay themselves when a payoff condition ia detected (such as the target being destroyed). This adds

a level of coriplaxity to the discovery process and is not considered further here.

Finally. by adding a RETURN operation, the system can essentially act as a standard pro-
grawa. For example, the learning system might detect an approaching enzmy aircraft, switch to a
defensive phase, handle the situation, and then a RETURN rule that detects situation resolution
would fire and return ihe phase to the previous one. If a stack mechaniam is used ‘o store the
previous phases, then essentially infinite levels of interrupt could be supported. However, as the

mechanism becomes more complex, the ability of the system to learn appropriate use of it is re-
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duced, due to the increase in domain complexity. This would have to be considered in implementing

this approach in real classifier systems contrelling autonomous aircraft agents.

4.2.6 The potential of self-sensory-resiricied sysiems. In Chapter 2 it was noted that
animats have been designed that limit the sensory inputs to the system to only those needed to
do the task it is currently doing(48). This reduction of inputs reduces the search space the syster
must deal with, and so should make the learning of useful behaviors in such systems easier. Can

this be applied to classifier systems?

One implementation of this aporoach could use the above phasing mechanism to select the
detectors encoded into the detector messages. Since each phase is isolated from the others, this
would allow the overall complexity of each phase to be reduced, in effect providiag a strong method

of context filtering.

4.3 Interfacing to a DIS environment

This section departs from the previcua sections and focusges on the interfaces needed to connect

a learning system to a simulation network.

We apply the ideas pregented here in the next chapter, where they are used to design the
prototype learning system’s interface, and again in Chapter 7, where we examine them in a broader

context.

Distributive Interactive Simulation (DIS) is a proposed standard for interconnecting dis-
tributed simulations within the bounds of a synthetic werld via network communications links(19).

More specifically(16:1),

DIS is a time and space coherent synthetic representation of world environments de-
signed for linkirg the interactive, free play activities of people in operational exercises.
The synthetic environment is created through real-time exchange of data units between
distributed, computationally autonomous simulation applications ir the form of simu-
lations, simulators, and instrumented ¢quipment iaterconnected through standard com-
puter communicative services. The computational simulation entities may be present
in one lecation or may be distributed geographically.
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The applications'® that DIS support are many, and include manned vehicle simulators, computer-
generated forces, and coraputer interfaces to real equipment. By exchanging packets of information
called Protocol Data Units (PDUs) between these entitiec along the various network media, the
goal of DIS is to create a complete synthetic battle environment that users interact with in real
time (19:1).

DIS is a distributed protccol with no central control. This means that exercises between
applicationc (that support one or more agents) can be spread between various hardware systens.
A ground truth model is used, mean’ ag that actual location and other data is communicated via the
networks and the receiving applicatiuns given the task of presenting the perceived version (if any)
of the simulation object to the simulrtion agents it supports. Dead reckoning techniques are used
by the receiving applications to maintain the current position and status of such remote gimulation
objects between packet receptions. Als. specified, among other thi'.ge, are the world geometry,

weapons fire, and communications pretocol(19:2-7)

One of the yoals of this investigation is to present a set »f guidelines for the interfacing of an
autonomous agent to a distributed simulation. We argue that any such interface must be distributed
to bz scalable. If we define a distributed interface to be one where no part of the interface structure
performs more than a relalively simple, coherent task, then each such part can be implemented
as a pseudo-process within a possibly distributed computer archi.ecture. Before we continue with
this development, however, we digress and examine the various interpretations that can be used to

view such a structure.

4.3.1 Pipes and fillers, layers and servers.  Figure 4.1 shows a general layered interfacing
structure. In thi. interface arrangement, information is received by the network interface, processed

by different layers, and firally delivered to the agent as its stimulus or environmental inputs. The

13This definition is slightly different than we have used so far, i.c. an agent within an environment, but this
difference is mainly a change in perspective.
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Figure 4.1 Connecting an agent to the world.

agent then reacts in some way to these inputs and generates a set of cutputs or response, which is

then passed back to the network interface and broadcast to other agents in other simulations.

As inferred above, one way to look at this problem is as a set of layers, each processing the
data and passing it on to the next layer. Each layer can be thought of as encapsulation of the
funrticns of that layer, providing a transaction-level conversion to data flowing thrcugh the layer.
Entities on a particular side of the interface only see a specific model of the other side presented to
them. In such a design, the entity only has to meet the protocols of the interface and does not have
to worry about what lies beyond it. This is the view taken when DIS defines the application 'ayer

as one layer in the DIS structure. It is also the approach used in the Open Systems Interconnection

model(78:86,100-105).

Another way to view the interfacing problem is to view each interface between data repre-
sentations as object managers with inputs and outputs, similar to how an Object-Oriented Design
defines the enlities in a program to be objects that receive information, react to it, and generate
& response that it passes on to other obiects(7). This view emphasizes the desirability for loose

coupling between the various entities to reduce traffic flow and keep the interfaces simpie.

Yet another way to view the flow of uata 13 to treat each interface &s a dala filter that filters
and converts the input data into a formn usable by the next receiving stage. This is exactly equivalent

to how a pipe (in the Unix context, for instance) is composed of a set of filters that each receive




input, process it, and pase on a new version of the data to the next fiiter in the pipe. In this view,

a set of filters converts the data from the DIS network inio a (typically) simpliied form that the
agent’s learning system can use. The agent’s learning system makes a decision about this simplified
form of the data, then passes this decision back through another set of filters to the DIS interface.
By the time the data reaches the interface, it has passed through a flight model, for instance, that
has generated the “real-world” consequences of the agent’s decision, and a PDU generator that has

converted the data into packets for sending over the network.

Finally, some parts of the system can be viewed as servers, in the parallel compuiing sense
of “an object plus a task”(45:155), that receive inputs from many sources and can provide services
to many other simulation objects based on these requests for service. If we view the server as “an
object in execution”(45:155), then servers provide a cross between a layer and a filter that react to
structured data presented to them and pass on structures that encode the results of these reactions.

This view lends itself to parallel architecture distribution if the servers are loosely coupled.

The reader should note, however, that each of these representations are of the same system,
and that each, if generally enough specified, can be made equivalent to the others. The idea is to

view the problem at hand using the model or models that makes the problemn the simplest.

4.3.2 A suggested inlerface structure. We now present a possible interfacing structure
for connecting the autonorous agent to the DIS network!*. The philosophy taken is to minimize
the amount of processing at any interface in the system. The reason for this is to facilitate the
debugging and later maintenance of the parts of the system. Each interface layer can be tested
individually, as can the pieces in a good software design, and then assembled and tesied as a

whole. And, as with object-oriented designa, modifications to the system can be isolated to the

of the PPLS systemi. Dan Gisselquist was especially helpful in designing this interface.
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Figure 4.2 A proposed DIS interface.

various interface layers. This facilitates the adding of new interfaces to other simulation systems,

for instance.

PDUs are buffered in the entily manager, which main.ains a store of the various objects
seen on the DIS network. This data is filtered according to the requirements of what I call the
craft interface. Only thuse simulation objects of concern to the autonomous agent controller (the
learning system) need be passed to the craft interface. The entity manager therefore filters out any

PDUs, (such as ground activity) that the autonomous aircraft agent doesn’t currently need.

The craft interface acts as another filter, converting the complex state data to a simplified
form, taking into account the current needs of the learning system. Any data not needed by the
iearning system to make the current decision need not be presented to it. This is an important
point. We distinguish here between the cookbook filtering of the craft intertace that can take a
deterministic amount of time ar.d the heuristic searching of the learning system. Ever though the
craft interface may have a iot to do, the possibly exponential time learning system can stiil be the
bottleneck in the system. If the context of the system is under conirol of the learring syetem (as
proposed in the PPLS system of Chapter 5), then the craft interface and the learning system work
together to learn filtered concepts in polynomial tirme. This assumes the craft interface provides

the sufficient filtering noted by Schapire to adequately isolate the conczpts to be learned(73).
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Likewise, the simple decisions of the learning system are filiered through an aircraft model!®
and the resultant flight behavior passed back to the entity manager. This, in turn, passes the new
state to the network, and also back to the craft interface, if needed, to provide feedback on the
current state of the self crafi. By using filters at all stages, each interface is reduced in complexity,

locsely coupled, and easy to test.

4.4 Summary and Discussion

This chapter bas presented much of the theory behind rule discovery in standard classifier
systems and many enhancements that may be useful in our system. Important are the ways that
context is limited in classifiers to allow the learning system to focus on a filtered domain space. The
Samuel system (Section 3.4.2) provides & good eva.nple of the need for context limiting in learning

systemas.

One question to ask is if rule chaining is really necessary to produce complex behaviors in
classifier systems. We argue that the answer may be no, especially if the inputs to the system
provide enough previous state information. This is equivalent to 8 human reacting to the perceived
immediate state of the world based on the states of all things in the environment. Only occasionally,
we argue, does a human actually think through a set of steps to arrive at an action. Most actions
are instan.aneous based on the immediate situation. Likewise, if the learning system is given a
set of suggested actione and a sufficient environment. | state madel, the decision can be made on
these inputs alone without reliance on a chain of reasonings. Concept learning is just this process

of deciding if what is se2n is indeed what we want.

1%The odel brc:cntcd in NPSNET: Flight Simulation Dynamic Modeling Using Quaternions(8) by Cooke, et
at., cusvently provides the flight model for some of the latest AFIT simulation designs. It also presenis a way to
determine the settings of flight surfaces to have the simnulated aircraft, say roll right and clunb, by sclving a amall

matrix.
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Population niching allowe the classifier system to focus on the specific needs of the current
situation. Booker’s restricted mating policies allow such niches to form within a population. These

methods show promise and are considered in the design of the PPL" aystem.

The phasing approach developed by the author provides another means to limit context in
a multi-mission environment. As long as the types of missions can be defined, which is generally
the case in the autonomous agent problem, this approach can provide the learning system with
a simplified environment representation that lends itself to concept formation. it also allows the
systern to jump between phases as the situation dictates, even providing a form of “interrupt”
capability thai can handle when a high priority situation is detected and must be immediately
addressed. This approach is similar to ° ierarchical classifier system designs, but implements the

hierarchy at a different level.

The design proposed in the next chapter therefore uses a phasing systemn to form subpopula-
tions that handle each of the tasks of the mission. Although the phases themselves are hard-wired
into the learning system at present, when each population niche is called upon by the system is
completely determined by the rules in the system and the inputs form the detector interfaces. This

should allow for very flexible behavior (and an unfortunate increase in search space complerity).

The remaining chapters address how a prototype systemn using these techniques system is

implemented, how it is tested, and tiie results of this testing.



V. Design and Analysis of the Phased Pilot Learning System

This chapter details the Phased Pilot Learning System (PPLS), including what the system
does and how it is interfaced via a layered hierarchy of interfaces to the target environments. We

also present a formal software analysis of the implemented system.

The design of the PPLS system must take into account the different aspects of learning. For
instance, new rules should be implantable into the system as information is available. Alternatively,
in situations where new rules are not known, the system should be able to explore its environment
and learn such rules autonomously. In any event, the input and output interfaces need to reflect
as clearly as possible those parts of the world important to the PPLS learning system. The be’er
this filtering, via methods of deduction and data reformulation or even other learning systems, the
casier it is for the PPLS learning systemn to adapt its ruies to the environment. The formalities of

problem analysis and program design are addressed in this chapter.

Important to the design is the need for an effective user interface. PPLS is based on &n en-
hanced version of the CFSC-1 public domain classifier systemn of Rick Riolo(59). The modifications
give the system a means to filter out rules that are not needed during a given phase of a mission,
enhancing the lcarning system’s ability to discover and remember rules that prove useful for each
phase of the mission. The specifics of phasing in PPLS are presented here, along with the rest of

the design.

The environments that PPLS are interfaced to include a very simple test environment that
maintains the self craft only (all other objects don’t move). A second interface to the PDP-C system
is provided(31, 32), giving the system acceas to and control of an independent agent in the PDP-C
simulation. This s a complex interface with some unique synchronization requirements. A third
interface to a monitoring program allows agent activity to be monitored graphically each iteration,
providing the nser with immediate feedback on all activity. Finally, a fourth interface discussed, but

not as yet implemented, 13 to a proposed DIS network “entity manager” currently being designed
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and slated for ccmpletion in October 1994. Each interface provides a unique challenge and a unique

perupective on what PPLS can do.

5.1 Program Analysis

This section looks at the problem from the program’s point of visw of data structures and

data representation. A set of requirements is presented. Then the data structures are determined.

Problem Requirements

The specific problem being addressed by this research o determine the feasibility of using a
standard classifier system as the control system in an adaptive autonomous aircraft agent. Specific
criteria have aiready been noted in previous chapters, so what ie needed are the precise functions

the system is to periorm. These are

o The system is to store and process production rules that can control the behavior of a sim-
ulated autonomous aircraft agent. The use of production rules is dictated by the use of a
atandard classifier system as learning system. The encoding of the rules can be either sym-
bolic or binary, though basing the system on the CFSC-1 classifier package strongly supports

binary encoding since this is all the base system supports.

e The system is to show the ability to learn simple tasks via its discovery algorithms. These
tasks include the target bombing problem described earlier (and in detail in the next chapter)

and enemy evasion.

o The system is to prcvide a structured and flexible interface to the environment capable of easy
reinterfacing to other environments. The structure of this interface should permit easy system
expansion and distributed nrocessing as much as possible. To this end, an object-oriented

approach to the interfacing design is a good potential methodology for this.




e The system is to provide a rezsonably simple and useful {“user friendly”) interface to ihe

user. This requires quite a few enhancements to the CFSC-1 system.

o The system must allow for adeguate cont:ol and monitoring of the systemn to gather results

showing its ability to accomplish these tasks. Additional monitorirg tools are to be developed

as required.

Program Structures

Given the CFSC-1 classifier system (described in Sections 3.4 and 4.1, and Appendix B)
as a starting point, the data structures for the internal workings of the system are more or less

determined. For completeness, these structures are summarised here.
P s

The basic two structures in the system are the message list and the classifier list. Both lists
are implemented as linked node structures. The actual condition and action fields are implemented
as encoded unsigned integers to allow for quick determination of match conditions. Since the
structures can be any number of bits in length, a system that encodes them into as many words as
necessary allows for quick matching in a flexible way. The trinary alphabet { 0, 1, # } is represented
by two sets of unsigned words. The 0, 1 status is noted in the first set of words, while the “don’t
care” status represented by the # is noted in the second bit array as a mask for the compares.
Routines are provided to convert the structures to an ascii format to allow for easier processing of

action operations, display of values, etc.

‘The basic functions are as ncted in the above referenced sections.

Interfacing Structures

These are addressed later in this chapter, and so are not discussed here, except to say that

the interfaces are a simplified version of the proposed interface design given in Section 4.3.

The program interfaces to both a test simulation and the PDP-C simulation system. These

interfaces are presented shortly. The DIS interface design is similar to that presented in Chapter 4.




5.2 Sofiware Complezity

This section examines tiie complexity of the PPLS system. which includes an analysis of parts

of the CF8-C clausifier package that the system i built on. This analysis then looks at the potentiai

to scale the systemn, as implemented, up to more complex Lasks.

The PPLS system is composed of the following files with the following complexities. A

hierarchical arrangement is used to show what files call what other files, The columns at the right

include function complexity and total complexity (including all called functions) at that level.

Note that this analysis is only for the Classify loop, the main loop that executes when the core

classifier system is running. Other functions involving system input/output, etc. are not included

since they do not affect the running system’s operation.

The symbols are defined as:

St
Nc
Nm
Sz
Sw
Sb
Nd
Ne

Nop

Number of Classify steps executed

Number of classifiers in population

Number of mcssages in message list on a classify cycle
Number of bits in a condition or message

Word sige in bits

Number of words in one condition (packed representation)
Number of detecior messages

Number of efiectors implemented

Number of Classifier operations defined

The complexities for the basic classifier loop are given in Figure 5.1 and for the discovery

learning algorithms in Figure 5.2.

If we assume that Nm < Nc on any given cycle, then the complexity of executing St classifier

steps is St * Nc * Nm? * Sz2. The discovery algorithms (i Liszover) adde to this when they
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“Function Complexity Complexity
{This modaule) (Inclusive)
Clasaify St 3t * (Nc + Nm) * Nm® * Ss°
StertStp Nc + Nm Nc¢ 4+ Nm
REDetect Nd Nd *?
GetDiage variable variable
GenCands Nc * Nm * Nm * GenCand™°** ! | Nc? * Nm?
GenCand 1
GenNMags (Nc + Nm) * PostCfMs (Nc + Nm) * Nm? * Ss?
Cal-Bid 40
PostCfMs Nm * Ss * Nm * §gNet* 2
MakeNMsg | 1
GerBehav Ne * Nm * Sz Ne * Nm * Sx
UpdCfStr Nz * 30 Nc? * 30 * Nm
ApplyBB Nin Nm * Nc
PaySuppl Ne Nc
Figure 5.1 Complexities. Ccmplexities of the classifier loop routines.
[ Function Complexity |
(Total)
Discover NcfNote 3
DscCDM Sa * Nc
DscCEff Ne * Nc
DscACPC Sz
D3cCSS Ss
DscTLB Ccf
DscTLB1 Cf
DscBkgGA Nc 4 Nc * Ss
RplcCos Ne?
Nctes:

1. One of the Nin factors goes away if only one condition field is used (WildCondiz = 1).

2. If OneMPerC = 1, then only Sw * Sb 4 Nm.

3. The actual comrplexity is dependent on which discovery algorithme are selected. Also, these algorithms
rre not typically executed every cycle.

Figure 5.2 Complexities (cont.). Complexities of the discovery learning algorithms.

5-5




execute, but only execute on occasion. The overall complexity is based on the number of rules in
the system tiimes the ~quare of the allowed nunber of messages. In a typical system, the number
of rules is much larger than the number of messages, so these two quantities are roughly equal.
The compiexity is then roughly the cube of the number of rules. (Note that most operations are
performed indeperdently on euzch rule. This allows the svstem to be parallelized relatively easily

Ly distributing the rules over many processor nodes.)

Since the interfaces to the outside environment cnly map one form of parameter to acoitur,
for the most part, the main concern of these interfaces is communications time. This is quite varied
on the Sun network, but should be much more stable and predictable on a scparate network, as is
proposed for running DIS. Also, the use of interprocess pipes removes the file system delays, if all
processes can be synchronized and all can be run on ke same hardware architecture. Note that

log files generally prevent vrunning with no file system accesses.

53 Implementation

This section details how the PPLS system is impiemented. The details of the CFSC-1 system
components was given earlier in Section 5.1. Various interfacing structures nseded by the system

to communicate with its environments are detailed in a later section.

5.3.1 The CFSC-1System. The Classifier System in C (CFSC-1) classifier package written
by Rick Riolo of the University of Michigan was used as the baseline for PPLS. The medifications
required are documented in the source code provided as Appendix ??. This package of software
routines implements many of the algorithms found in the literature and provided a good starting

point for implementing this system.

The package has undergone many iterative changes since it was first developed around
1986(59). As a public domain package, many of the latest technigues have been incorporated into

the system as they were developed by various authcrs. These include some of the mechanisms used
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by Booker’s restricted mating policy approach, a crowding mechanism based on Delong's work,
and the chaining and covering operators developed by Riolo himself. These sre all controilable via

a set of system variables tinder user control at runtime.

The flip side of this is that the many revisions have left parts of the source code rather hard to
decipher. Though mostly well cominented, the core routines have growu and now interface to many
parts of the syetem. This impeded efforts to implement the changes below, since many various side
effects sometimes resulted from the simplest of changss. For instance, limiting the selection of
rules as parents (as was done to implement part of the phasing mechanism), resulted in no rules

matching in some cases. This made the system unusable until the cavse was determined and fixed.

Overall, however, the system provides a good starting point for Michigan type classifier im-

plementations. See the source code in the Appendix for further details on specific implementation

details.

5.9.2 System modifications. The moditications can be summarized as follows. Most

modifications can bz disabled by changing the status of one of the modified system’s variables.

¢ The sysiem was converted to allow for single-classifier operation. This allowed the routines
to concentrate on stimulus-reaction responses and minimize the effects of internal messages.
This, though, does not mean that the approach is not usable with classifiers with multiple

condition fields, since the WildCond2 variable controls this operation.

This change was implemented to limit the system to a simple, nun-chaining configuration.
The gecond message field in the CFSC-1 system is generally used to match against messages
generated by other classifiers the previous cycle step. Also, by removing the second level of

maiching from the core laup, the system complexity is reduced by Nm.
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e An internal environment was implemented to conduct tests on the ability of the system to
learn. This is an extremely simplified environment, but complex enough to force specific

actions to be learned.

The test environment uses the same file interfaces as the PDP-C icterface, but uses an addi-
tional routine inside the interface to simnulate the movements of the self craft. The activities
of the enemy Bogey are limited (with location generally fixed) to minimise the complexity
of the system during cycel step analysis. The details of this environment are given in a later

section.

e An interface to the external PDP-C simulation waz provided, allowing the learning system
to directly monitor the actions of and to control a single aircraft in the PDP-C simulation
(deecribed in the next chapter). This is a full-scale simulation that implements multiple
rule-driven aircraft within a DIS-compatible environment. The interface nses Unix pipes and
semaphore files to synchronige activities with the PDP-C system. This environment is also

detailed later.

e The phase mechanism was implemented. Routines affected included the matching routines,
the discovery algorithms, and the environmental interface. This mechanism was implemented
in such a way that the other mechanisms built into the CFS-C system still can be used,

allowing multiple levels of learning.

e Various other modifications to support the application and the provide a smoother interface
(including an alias processing system, a wildcard variable search system (for the 200+ vari-

ables the user can set), and the moving of the environmental variables to the main list to ease
their access)).
Single classifier operation. The conversion to single classifier operation allowed the system

te operate on rules of the form cccc/aaaa, instead of the two condition field form. This facilitated

the stimulus-response approach being implemented by this investigation and also reduced the com-




plexity of the main classifier loop. It also helped to reduce the display requirements of the system,
since even Sun workstations have problems displaying rules with two 32-bit condition fields (broken

down by field) and & 32-bit action field (also broken down).

Internal environment. The internal environment simulated the environment of an outside
world by reading in the output file of the PPLS system, processing the simulation objects in the
file, and saving the file to the input file interface of PPLS. This approach allowed the system to
mimic the operations of the PDP-C interface, for instance, and permitted the testing of many of

the routines shared between the two interfaces.

Key to this approach was the implementation of a craft structure layer that maintained the
state of the outside world in an environment-dependent structure. The PPLS system then used
two routines to map this structure to the internal PPLS data structures and convert a modified
version of this internal structure back to the craft structure format. This approach allowed the
PPLS core system to adapt to various interfacing requirements without any drastic change to the
core routines. All conversions and special interfacing requirements were handled at the interface

layer that maintained the craft structure.

To facilitate monitoring thetest system’s activity, actual files were used to implement the
environmental interface. This approach slowed the system down greatly, due %o the conditions of
the AFIT file server structure, but allowed a thorough analysis of the aystem’s activities during

each time step.

Ezternal interface. The external interface mainly focused on interfacing with the PDP-C
system. This system (described in more detail in the appendix) provides an external file-driven
interface by which an outside system can control one of the simulation objects in the simulated world
it maintains. The system is written in the rule-based Clips/COOL language, and the interfaces
reflected this by passing to the PPLS systemn a COOL object structure that represented the agent’s

object in the simulation. Control was provided by allowing the PPLS system to make changes in
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this structure (such a increasing throttle or changing angular accelerations), and then letting the
PPLS systern pass the object struzture back to the PDP-C simulation. The simulalion system then

made the modifications to the agent’s simulation object and executed a simulation cycle.

Synchreonization was provided using a set of Unix pipes ~ one for input and one for output. A
set of semaphores were also established inform each participant in this protocol when information
was available. This approach allowed the two system to run lock-stepped, which facilitated analysis

of both systems’ behaviors.

Phasing mechanism. The phasing mechanism was implemented by creating two new fields in
the condition/action field structure and by modifying the operation of some of the core CFSC-1
routines. The two added fields, CurrentPhase and NewPhase, provided context tagging of both
messages and rules. The detector interface was modifisd to add the phase tag to messages as they
were built from environmental inputs. These tagged messages prevented messages outside of the
context of the current phase from becoming active during any particular phase. Since only rules
whose phase tags matched the phase tags of input detestor messages can fire, this effectively split

the rule base into a set of subpopulations that reprcsented each phase of mission activity.

The core CFSC-1 system required sorne modification to implement this system. A new actior
operation, PHASE, was created, that allowed a rule to change the current phase of the system to
a new phase given in the NewPhase field. By triggering these phase change rules when specific
mission criteria were met, this approach implemented a sort of agenda that specifies the different
mission phases the agent has available. Since these rules are conditionally triggered, modifications
to the agenda can evolve as the mission executes. This also implements a hierarchical rule structure,
cince each subpopulation of rules specializes to a specific part of the mission This allows a sort of

program structure to be implanted also, or even to evolve.

The discovery algorithms were modified to implement a form of restrictive mating based on

Booker’s approach, but limiting the discovery operations to those rules within the current phase.
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As in Booker’s methods, the assumption here is that rules that are currently servicing a particnlar
mission requirement (environmental niche) are more likely to contain relevant building blocks than
other rules in the population. The parent selection and the rule replacement algorithms were both

modified to enforce phase mating.

Other modifications. A number of other modifications were made to the CFSC-1 system to

aliow monitoring and control of system operation. These are described below.

The system maintains a large data base of runtime variables (over 200). Since many of these
variables are cryptic in both name and function {such as bkggart for Background GA execution
Rate), an aliasing feature partially implemented in CFSC-1 was expanded and a description field
added. Most variables were given more descriptive names (once their function was determined)
as well as a description as to what settings were appropriate for them. The Display function
was modified to allow for wildcard matching, allowing the user to determine which variables were
applicable in setting up the cover operators, for example. The display interface was also moditied

to show the alias and description fields as well as the variable name and value.

A plot file utility was added to allow the progress of the agent through the environment to
be saves and later plotted using a utiliiy such as GnuPlot. The track of the self agent was saved,
as well as thut of the enemy, and the locations of target and base destinations and ordnance drops

included. This proved to be & useful analysis tool.

An interface to a real-time monitoring utility, showpdpc, was added so that the progress of
the agent in the simulation could be examined as the simulation executed. This proved valuable
when the time camne to match the rules that were firing with the detector messages and the current
state of the agent. As different phases executed, the agent’s track showed the variations of mission
focus. For example, when the agent noticed an enemy in its path, its track quickly changed to
wvoid the Bogey. Once outside of a specific range, the previous phase’s rules took over and the

track adjusted to steer the agent to the current destination.
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A symbolic rul: interface was added to allow rules 2nd messages to be viewed in a more
readable form. The input rule routines were also modified to allow either binary or symbolic
rules to be read in via the rule loading routines. This interface uses a lockup table to translate

gymbolic names to binary loci in the rule fields, aud so is completely redefinable for use with other

applications.

The environmnent-dependent code was moved to a separate set of filn to promote the dis-
tributed interface concept. One exception was the addition of the environmental variable truc-
tures to the global variable list. This blurred slightly the interface (though only in two localized
routines), but allowed the powerful wildcard display mechanism to be used to display, set, and save

and load all environmental variables.

A new action operator, STOP, was added 8o that execution of the system could be terminated
based on the triggering of a rule’s conditions. This allowed a test to be performed until either the

termination condition was met or the maximum number of cycles were executed.

Other changes. Finally, there were many parts of the code that were just in error and needed
fixing. These included uninitialized pointers, rate determination conditions, and many other minor
and not so minor bugs. Fixing some of them required an indepth look at the function of various
sections of code. This is one of the costs of using a system the author himself says ie in a constant

state of ... relopment.

5.9.8 Sysiem slariup and ezeculion.  The environment is set up via a set of files read in
after startup. The first, init.cfs, establishes the names and descriptions of all run-time variables
and contains the rames of the startup classifier, message, and environment files. This nets up and
initializes the cystem.

Once t),¢ system is started, a previously saved rule set can be loaded to restore the rules and

fitnesses to . rtate previously saved by the user. Also, command filvs can be read in to set up
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various autodisplay functions and set various environmental and logging variablea. The plot files

are also initialised at this point, if selected.

The system then waits for the user to execute classifier cycles via the classify command.
Any number of steps can be implemented, though single stepping is useful when monitoring the
exact interchange between the PPLS system and the environment. When the PDP-C environment
is used, the system freeses (due to the pipe operation and semaphores) until the PDP-C system

responds. This allowed the checking of hoth systems in a single-step feshion.

The monitor facility is turned on via a set of systern variables. Aclivating this interfacr
instructs the PPLS system to generate a separate data file that can be monitored as the system
executes. {Remember that if pipes are used for the roain commnunications links, this inhibits direct
monitoring of the input and output inierfaces.) A system of semaphores can be {urned on to ensure
data is completely written to the interface before the monitoring utility reads it.

At any point the user can either save classifiers or messages to a file, or reload them from a
previously saved file. The environment is harder to save, since many aspects are dependent on the
sinzulation on the other side of the interface. The exception is the internal test interface, whose state
is completely determined by system variables that are sav:d, the rule and messuge populations,
and the interface files.

The system terminates when the user enters the STOP or QUIT commands. The log and

plot files, if still open. are also closed at this point.

5.4 Object-Oriented Deasgn Aspects of the Phased Pilot Learning System

This section looks at how the design of the PPLS system follows many of the counstructs of
object-oriented design (OOD), though most ol the Ci'S-C system itself uses a hierarchical functional
breakdown. We also look at what would be required to reimplement the system from the OOD

perspective.

5-13



"CLA" PILE
fhased CRAFT FILE "SEM" FILE CLIPS
Learning RUNNING
pommed NTRFC SRR INTRFC
Systam INTRRMAL CRAFT "IN® FILES PDPC
STATE STRUCTURR ‘SEM" FILX
STRUCTURE
PLOT
n"SEM" FILE “CLA" FILE DATA
FILES
MONITOR GNUPLOT
TOOL DATA

Figure 5.3 Interfacing PPLS to the outside world.

The system intertacing is given in Figure 5.3 below.
The basic PPLS system structure is given in Figure 5.4 below.

Much of the code in the system functions to initialize the system and perform the user
interface. The core of the system, the main classifyirg loop, is a small part of the system. Most of

the functionality implement the user interface and the interface layers.

Though the main system uses a functional breakdown, the interfaces are more object-oriented.
This was done to facilitate the interfacing of other systems to PPLS with minimum change to the
main system. Many other parts of the system iend themselves to object-oriented design (OOD), as

can be seen in the functional OOD diagram.

5.5 The Internal Test Environment

This section describes the test environment built in to the PPLS system. This environment
allowed for the testing of learning algorithms without the need of loading and operating the Clips-

based simulation environment of PDP.C.
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5.5.1 Description. The PPLS syatem includes an interface, called “testenv-intfc.c”, that
can be linked in to the PPLS system to create a test image called “plst”. This test version of PPLS
uses many of the same file structures of the external interface system, and so tzsts many of the
features of this interface. But because the system does not require the Clips-based PDP-C system

to be loaded and running, the plat system runs much faster.

The interface structure was shown in Figure 5.3. The systern uses a set of files to maintain
the data links. These fileg, “testfile.in” and “testfile.cla”, mimic the functions of the PDP-C files.
“testfile.in” is used to pass data from the PPLS systermn out to the environment, just as the “ed-
craft.in” file serves that purpose in the PDP-C system. “testfile.cia” has the same format as the
“edcraft.cla” file written by the PDP-C system. This file receives information from t}'» external
environment and passes it to the waiting PPLS learning system. In the PDP-C system these two
files are implemented as Unix named pipes to minimire file I/Q. Here they are actual files to allow

the data to be examined.

The file format used in both “testfile.in” ana “testfile.cla” is given in Figure 5.5, while the

data structures used are given in Figures 5.5 and 5.7.

The following steps are executed every test aystem interface cycle. These functions are all
handled by the update external worldroutine in “testenv-intfc.c”, which is che primary entry

point for environment interfacing:

1. New data from the updated stat~ of the environment iz written to the “testfile.cla”file.
In this test version of the system this data is generated by copying the “testfile.in"file
onto the “testyile.cla”file, making state modifications as the copy proceeds. The reading
and writing functions are handted by the “slotio.c” interface, which is designed to interface
to the Clips COOL data structure that PDP-C writes and reads. The update function is

handled by the update exterrai craft routine in the “testenv-iuntfc.c"package.




(Csestcratt] of EDCRAFT
(name-of sdcraft)
(side neutral)
(phase Cruise)
(state moveable)
(location 0 0 100)
(velocity 0 0 0)
(orientation 3.84e-08 -0.11 -0.981)
(goal waypoint-2)
(goal-location 50 200 0)
(desired-direction toward)
(abc-velocity 10.C¢ ~4.49e-07 -2.06e-07)
(abc-acceleration ~1.326e~05 0 0)
(gbc-thrust -1.325e~05 0 0)
(abc-attitude -3.84e-08 2.061e~08 -4.491e-08)
(attitude-rate 0 2 0)
(attitude-moment 0 ¢ 0)
(throttle 0.000000)
(mass 10)
(on-the~ground FALSE)
(fuel 8607.769237047487)
(role lsader)
(1sader-ox none)
(follower—of none)
(mission testing)
(assignment fliight-tast)
(plan neutral-flight-test)
(condition alive)
(missile-lcad 3)
(type-of fighter)
(number-cf 1)
(tactical-coordination rone)
{formation none)
(approach none)
(bearing-to-defensive-target noue)
(distance-to-datensive-target none)
(xill-radius-of-defensive-target none)
(mansuver none)
(target-name none)
(target-status alive not_attacked)

Figure 5.5 Contenis of the mterface files “testfile.in” and “testfile.cla”.
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/#%xx  CRAFT STRUCTURE ##%%/

struct craft_struct [
char_salot aelf_vame;
char_slot self _side;
char_slot aelf_phase;
char_slot self_state;

xyz_slot self_location;
xyz_s8lot self_velocity;
orient_slot self_orientation;
orient_slot self_attitude_rate;
double self_throttle;

xyz_slot target_location;
xyz_slot enemy_location;
xyz_slot enemy _velocity;
orient_slot enemy_orjentation;

double enemy_attack_range;

xyz_slot base_lccation;

char_slot goal; /#* mnot currently used */

/* bomb count */

int self_miseile_ load;

double ordnance_range;
char_slot target _status;
cher_slot target_attack_ status:

};

typedef struct crafi_struct craft_state;

Figure 5.6 The craft_state data structure.
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/* detector bit settings »/
int spaed; /¢ 3P */

int direction; /% DIR */

int target_aspect_h; /#* THO »/
int base_aspect_h; /* BHO »/
int enemy_asyect _h; /* EHO »/
int target_distance; /¢ DIS =/

float target_horiz_offset; /¢ THO.long */
int over_tuxget; /* 0T */

int ordmance_count; /+ OC =/

float ordnance_range;

float base_horiz_offset; /* BHO long */
int at_base; /x AB */

float enemy_horiz_offsot; /+ EHO_long */

/* target status */

int last_target_status;

int target_status; /* TS */
int target_attack_status;

/% distance state vars */

float distance; /* from whereever going */

float distance_tolerance; /* tolerance on position */

2loat distance_target_tolerance; /# tolerance on ordnance */

/* mapping from external interface (for internal use to calc above) */
chars self_name;

chars self_side;

chars self_phassa;

chars self_sntate;

chars self_goal;

xyz salf_location; /* 3L */ /+ § = SELF %/
xyz self_velocity; /* SV */

orieut self_orientation; /% SO =/

orisnt self_attitude_rate; /% SA */

fioat self_throttle;

xyz target_location; /* TL s/ /# T = TARGET %/
xyz enemy _location; /# EL ¢/ /+ E = ENEMY »/
xyz enemy_velocity; /+ EV */

orient enemy_orlientation; /+* EO0 »/

float enemy_attack_rangs; /% EAR */

xyz base_location; /» BL #/ /% B = BASE #/

/+ outputs *»/
int wmaneuver,

Figure 5.7 The internal state data structure.
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5.6

. The updated data is now read in by the get_crafi data routine, which converts to an

intermediate format held in a craft_state structure. Checks are performed on this data,
then the craft_state structure is passed back to the update_external world routine which,
in turn, passes it back to the calling envir3.c package that interfaces the environment to the
generic pls.c main routines package. envir3.c calls convert craft_3o_state to converl
the craft data to the internal form used by the system. This internal.state structure is
also mapped into the variable space of the system, allowing the user to display and modify

most aspects of thias interface data.

. ¥ any action is pending in the system, it is now applied by the routine apply_action_to_craft

which is called in “testenv-intfc.c". This routine applies the lastest action generated by
a triggered effector in the main CFSC-1 system. Actions include speed corrections and turn
operations. The updates are applied to the internal state structure current_state and passed

back to update_sxternal world.

. The internal atate data, now updated from the point of view of the PPLS system, is ncw

converted to the ¢cratt.state structure. Any type conversions arc handled at this level. The

new structure is then passed baci to update_external world.

. The updated da*a is then finally passed back to the environment by being written to the

“testfile.in”fiie using anotier ruutine in the “slotis.c” package.

. The routine update_sxtearaal wcrldthen returns to the caller, allowing the classifier system

to process ihe just received data at the same time that the environment reacts to tite new
cata. This creates a one-step delay in the interfacing, but 1w 3ssun:ed to be manageable for

thes= test conditions.

Interfacing to the Exzternal Enviror ment

5.6.1  The Pilot 2ecisson Phases in C simulution system.
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5.6.2 Interfacing to the PDP-C simulation. The interfacing here is similar to that used in
the internal test environment. For clarity, the steps used are elaborated fully below. As before, all
steps are courdinated by the update_external worlid routine, which provides the single interface

from PPLS to the environment.

1. If this is the first access to the PDP-C system, set the flag in “edcraft.sem”to the ASCII
text “MAKE-EDCRAFT”. This forces the PDP-C simulation to create the edcraft object

and create the “sdcraft.cla”file. This is only done once.

2. New data from the updated state of the environment is written to the “edcrarft.cla”file.
“edcraft.cla”is implemented as a Unix named pipe, so system execution stops until an
end-of-file is written to the pipe by the PDP-C system. The file “adcratt.sem”received the

value “FALSE", indicating that the data in the file “edcraft.in”is now considered old.

3. The updated da: s is now read in by the get_craft.data routine, which converts to an
intermediate forma* held in a cratt _state structure. This step is asimilar to the same step
in the internal interface operation. Checke are performed on this data, then the craft_state
siruccure is passed back to the update external world routine which, in turn, passes it back
to the calling envir3.c package that interfaces the environrnent to the generic pls.c main
routines package. eavir3.c calls convert_craft.to_state to convert the craft data to the
internal form used hy the system. This internal state structure is also mapped into the
variabls apace of the system, allowing the user to display and modify most aspects of this
interface data.

4. If any action is pending in the sysiem, it is now applied by the routine apply action_to_craft
which is called in “edcraft-intfc.c”. This routine applies the lastest action generated by
a triggered effector in the main CFSC-1 system. Actions include speed corrections and turn
aperations. The updales are applied to the internal state structure current_state and passed

back to update_externusl world.
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5. Tha internal siate data, now updated from the point of view of the PPLS system, is now
converted to the craft_state structure. Any type conversions are handled at this level. The

new structure is then passed back to update_external world.

6. The updated data is then finally pussed back to the environment by being written to the
“edcraft.in”file using another routine in the “slotio.c” package. The semaphore file
“edcraft.sem”is modified to contain the ASCII text “TRUE”, telling the PDP-C system

that the data in the “edcratt.in”file is now valid.

7. The routine update_external world then returns to the caller, allowing the classifier eystem
to process the just received data at the same time that the environment reacts to the new
data. This creates a cne-step delay in the interfacing, but is assumed to be manageable for

these teat conditions.

The PDP-C system reacts to the updated object record by reading select fields from this
structure and ueing rule firings to move the craft. The edcraft object has been designed as an
externally controllable agent in the PDP-C system and is immune to many system contrel rules.
A balance was created between object control and object simulation, allowing the system to move
{(according to the move data in the “edcraft.in”filej the craft and other agents to react to this

agent, but to prevent the simulation from taking control of it.

The PDP-C system is partially connected to the DIS network at this time, allowing the
actions of the gystemn to be monitored by a DIS graphical monitoring interface. This provides a
good “view” of the activities between the four agents and the fifth edcraft agent. Data is currently
passed to the network via data files and a conversion program, and 8o is not yet real time. Plans
are under way to introduce DIS objects received from the network into the PDP-C simulation,
possibly as additional edcraft objects. This will allow complete DIS interaction, within the limits

of the PDP-C simulation.
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5.7 Summary and Discussion

The design presented in this chapter for the Phased Pilot Learning System is a complex web
of sirnpler objecte and networking interfaces. This design allows each of the individual components
to function autenomously via loosely coupled interfaces, which allows it to be distributed between

different processes or even different hardware.

One of the main stumbling blocks was the CFSC-1 source code itself. The code was not that
well documented in parts and many of the interface structures not completely obvious. Making
modifications to this code had to be done cautiously to avoid side effects that effected the rest of
the system’s operation. That said, the modular design of the CFSC-1 system allowed the PPLS
system to be quickly implemented and the advanccd user features, both provided by CFSC-1 and

added by the author, made the monitoring of the binary rule system realatively easy.
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VI. Empirical Results

This ch;xpter presents the tests performed on the PPLS systemn and the resuits. First, we
present the test format, noting its complexity within the search domain of the environment. Three
basic forms of this test are used. The first form loads a set of rules inte the PPLS classifier
system and demonstrates that the phasing approach can be used to control the agent’s behavior
appropriately. This test shows that the agent controller can act effectively as a standard rule
processing system to control the agent using rote (implanted) knowledge and deductive information

filtering.

Then some of the rules arc removed from the rule set, leaving gaps in behavior that must be
overcome. This represents the case where most of the behaviors of the agent are useful, but where
no specific rules address a specific agent need. The agent must use discovery learning techniques
to induce the needed rules. Other rules in the population can function as seed rules to guide this
discovery process as the system uses a form of analogy to build new rules from parts of these seed

rules via the genetic algorithm.

Last, the rule population is initialized with randomly-generated rules (except for the phasing
rules) and tests are run to see how the agent adapts using the phasing rules and rewards as
guidance. This situation forces the agent to rely fully on inductive learning (at first) to generate
the needed behaviors. This is a rather drastic situation, similar to throwing somecne off the sireet
into an aircraft cockpit, but provides a base for later comparisons with the mixed strategy learning

scenarios provided by rule seeding.

‘The tests are carried out on the relatively static internal environment. As other regea:chers
have shown, even a small amount of knowledge impla-itation into the rule base can significantly

affect the performance of the discovery algorithms.
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system and demonstrates that the phasing approach can be used to control the agent’s behavior
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filtering.

Then some of the rules are removed from the rule set, leaving gaps in behavior that must be
overcome. Thig represents the case where most of the behaviors of the agent are useful, but where
no specific rules address a specific agent need. The 2gent must use discovery learning techniques
to induce the needed rules. Other rules in the population can function as seed rules to guide this
discovery process as the system uses a form of analogy to build new rules from parts of these seed

rules via the genctic algorithm.

Last, the rule population is initialized with randomly-generated rules (except for the phasing
rules) and tests are run to see how the agent adapts using the phasing vules and rewards as
guidance. This situation forces the agent to rely fully on inductive learning (at firet) to generate
the needed behaviors. This in a rather drastic situation, similar to throving scmeone off the street
into an aircraft cockpit, but provides a base for later comparisons with the mixed strategy learning

scenarios provided by rule seeding.

The tests are carried out on the relatively static internal environment. As other researchers
have shown, even a small amount of knowledge implantatior. into the rule base can significantly

affect the performance of the discovery algorithme.
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; A Simple Hulii-phase operation

Inputs: Y = Classifier Type, Ph = Phase, NP = Next Phase (via PHASE cfop), Tg = Tag, THO = Target Horizont:
OT = Over Target, OC = Ordnance Count, sp = Speed, BHO = Base Horizontal Offset, AB = &t Base, vIS =1

; Outputs: Man = Maneuver

; OP = Operation rule performss: none = Pass through, PHASE = change phase of system, STOP = atop a classify

; Params 9999 = net strength of rule to 9999

;Phasa 0 - fly to target

; steering

i? (ty det) (ph 0) (the= left) (ot no) (sp slow) and () then (ty eff)(man left)

if (ty det) (3h 0) (%tho= left) (ot no)(sp cruise) and () tken (ty eff) (man left)

if (ty det)(ph 0) (tho= right)(ot no)(sp slow) wad () then (ty aff)(ran right)

if (ty det) (ph 0) {tho= right) (ot no) (ap cruise) end () then (ty eff)(man right)

; speed

it (ty det){ph 0) (sp atopped) and () then (ty eff)(man accel)

if (ty det){ph 0) (smp slow){dis FAR) and () then (ty eff) (man accel)

if (ty det)(ph 0) (sp slow)(dis Mediun) and () then (ty e¢ff)({man accsl)

it (ty det){ph 0) (sp 7TISE)(dis CLOSE) and () then (ty eff)(man SLOW)

it (ty det)(ph 0) (sp T)(dis CLOSE) and {) then (ty eff) (man SLOW)

if (ty det)(ph 0) (oc 1) (ot yes) and () thsn (ty eff)(man drop)

it (ty det)(ph 0) (nc 2; (ot yes) and () then (ty eff) (man drop)}

it (uy det)(ph 0) (oc 3) (ot yes) and () ther (ty eff)(man drnp)

; Phase change

it (ty det){ph ¢) (tho 0) and () then (ty phase) (np 1)(man none) op PHASE params 9999
it (ty det)(ph 0) (oc 0) und () then (ty phase) (np 1) (man none) op PHASE params 9999
;Phase 1 - fly back to base

if (ty det)(ph 1) (ab no){(bko left) and () then (ty eff)(man left)

if (ty det)}(ph 1) (ab nc)(bho right) and () then (ty eff)(man right)

it (ty det)(phk 1) (ab yeos) and () then (ty phuss)(np 2) op PHASE params 8999

;Phase 2 - done

if (ty det)(ph 2) then (ty phaxs) op STUP params £999

;Phase 4 ~ evade enemy

it (ty det) (ph 0) (ehc 1) and () then (ty phase) (np 4)(man none) op PHASE params 5999
if (ty det) (ph 0)(ebo 2} and () then (ty phase) (np 4) (man none) op PRASE params 9999
it (ty det) (pk 4)(sho 0) and () then (ty phase) (np 0)(man none) op PHASE params 9999
; steering

if (ty det)(ph 4) {(eho= left)(sp slow) and () then (ty eff)(man right)

it (ty det)(ph 4) (eho= left)(sp cruise) and () then (ty eff)(man right)

it (ty det)(ph 4) (eho= right)(sp slow) mnd () then (ty eff)(man left)

if (ty det)iph 4) (eho= right){ap cruise) and {) then (ty sff)(man left)

Figure §.1 The rules used to test execution without learning.
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Figure 6.2 Ssquence of events in test problem.

This also implements default hierarchies, as is described in Appendix B. This can be seen by
the use of non-specified condition fields (that do not show up in the rules) that ellow tome rules to

match more general conditions than others.

For this test the learning mechanisms were turned off, 30 no changes in the rule list are made
during execution. The Bucket Brigade credit allocation mechanism, however, remains on in order
to update the fitnesses of the rules. This should allow the fitnesses to tend to their fixed-point

values for this set of tasks(59).

The test starts with the system in Phase 0 (which is always the starting phase). The agent
begins to progress forward by exccuting rules that excelerate the aircraft. Once some speec has

been attained, the agent steers to the first destination, the target on which to drop its ordnance.

The agent then is informed of an enemy craft in its path. This state detection forces the
learning system into Phase 4, which contains rules that allow the agent to evade the enemy. The
agent staye in Phase 4 until the enemy is no longer detected (designed to occur when the agent
is a specific distance from the enemy). This is communicated to the agent via the THO (target

horizontal fieid value “-” {00) of this field.

Once the agent is cloge enough to the target, it drops an ordnance. Hitting the target switches

the systera (via rule firings) to Phase 1. This phase concentrates on returning to the agent’s base.
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Once at the base, the agent switches to Phase 2 (the STOP phase, since the only rule in this phase
activates the STOP action) and the execution of the system stops. At this point the simulation
can be changed to another phase and continued (based on the condition matches of the rules in
the system). The enemy avoidance rules can be added to Phase 1 also, though this was not done

to keep the rule set simple.

Figure 6.4 shows the path the agent took in one test run (other runs are similar, but vary due
to probabilistic selection of actions3). This plot demonstrates that navigation and control using a

rule-based classifier system is possible.

This test shows that implanted knowledge can be used effectively to guide an agent though
a set of tasks. This is useful since rnany tagks faced by the learning system will have “cook bock”
approaches that can be effectively implanted into the agent. A guiding philosophy here can be to
limit learning to only those things that must be learned. This use of rote learning (as defined at
the beginning of Chapter 2) provides a way to make the agent’s learning more efficient in the task
domain. This is similar to how Soar(€7) ures chunks to solve problems it has seen before. The
question addressed next is whether this form of learning is compatible with the discovery-based

learning methods of the next section.

6.2 Internal Tests With Incremenlal Learning

Incremental learning, as applied here, refere to adding to an existing base of knowledge in
an incremental way that does not seriously affect the ability of the system to perform. This is
an especially useful form of learning when an on-line agent encounters a situation that it has not
learned how to handle yet. In this context, we are interested in adding or mcdifying rules in the

existing rule base when a situation arises not currently covered by the existing set of rules.

3The reader is referred to the test results appendix and the settings of the various variables used to define the
aperation of PPLS. Here we refer wo the setting of the Etfectur Resolution Mechanism flag (eff res mech) that was
set to 2, which instructs the system to chwoone the action that is most supported by the bidding rules, but on a
probabilistic basis. Thus rules may fire that are not the best supported, but only rarely.
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129 Cf£StrMax, max_cf_str, 9999 “max cf strength"
130 CfStrMin, min_cf_str, 1 "win cf strength"
131 CfBidNin, win_cf_bid, 0.1 "min cf bid"

201 OneMPerC, one_msg _pexr.cf, 1 “limit each cf to 1 msg"

202 DelHall, no_hall, 1 “nc internal DET msgs"

206 DwtectRt, detector_rate, 1 "how often dets sampled"

207 EREffectRt, effector_rate, 1 "activate matched offs this often"

244 Bid_ k, tidk, .1 "bid risk factoxr"

262 DMShare, bba_frac_det_nsg share, 1 "frac det msg gets rel to cfs (def 1.0)"
263 FrPayNE(, bba_frac_pay_non_eft, 1 "frac pny non-eff activating cfs (def 1.0)"

301 HeadTax, tax_head_rel, .0005 "sub strshead_tax each round"
202 AHeadTax, tax_hesd_abs, 0 "subk aheadtax sach round"

303 BidTex, tax_for_bidding .005

304 PrdTaxlx, tax_preduc_max, 0 “production tax"

306 FBidTa:, tax_failed_bid, 0 "tax on cf if bid but not produce"

619 MinNewCfs, min_ne~ cfas, 2 "if > N, is min num cfs to create (see FrNewCfs)"
621 FrNewCin, frac_new_cfs, .04

“fruc of ¢f pop repl w/ now cts = NeCissFrNewCfs (see Min¥exCfa)"
€22 CrowdFac, repl_croading factor, 1

"iwpick 1 rule to repl;>impick many, of thoss repl most like"

626 PkPrnWOR, disc_pisk_par_no_rspl, O

"jwpick rule oniy once as parent (w/o replacement); U=no limat"
628 RandFpic, repl_how_pick_replacement, O

"O=inv #%r;i=aq prob;2=1 v/ RpiCfUBd, RplACSBd, RplACUBA limits"
631 MxCfCepy, vepl. max_cf_copy, O

"mar nusber of identical rules; O=no limit; >0=do slcw¥ check"

633 BkgGARt, ga_bkgnd_ga_ rate, .i "Prob that GA will be used in = cycle; O=no GA"
637 BGABPPr, disc_bidding_par_prob, 0.

"pick bidding parents only prob (0.6 -> half time start w/ bdra)"
700 MuPrTot, mut_prob_total, .04 “total prodb of mutating a cf"
701 MuPrNSL, mut_frac_nal, .2 "prob mutate loci to wild”

720 CDMsgs, cover_det_on, 1 "1son"

721 CDMsgsRt, cover_det_op.rate .1

800 CEffs, cover_eff on, 1

"0=opff;1=make 1 cf when triggered;2=make 2 cfs; (see eff stiuct)"
801 CEffsRt, cover_eff_prob, .1

"prob that activate Cov efi op when triggered (by MadsMtsk)"

973 phese_on, Using_Phase, 1 'turn use of phase on"

974 phase_paxra, Parents_Within Phase, 0 '"choose parents from same phase"

976 phase repl, Replace _Within Phase, 1 'replace only rules in maz. ,.aase"

979 eff_xes_mech, env_eff_res_mech, 3

“Owuse high bid;i=use highest supported;2=gupport as prob"

983 PhaseCfMax, Max Cis_per_phase, 40 "Max number of Cfs in rule list for one phrse"
989 periact, psnalize_nonaction, 1 "1 = on; no action = mistake"

990 genwild2, generate_wild cond2, 1 "1 = on: when gen random cfs, make cond? all wild"
992 expop, population_expansion, 1 "1 = allow pop to expand to NmCfsMx (or Phuse limit)"
$94 covbada, cover_det2_ ch_act_prcb, .1

"prob that Mistake traggered det cover will mod action”

Figure 6.3 Some of the variable settings used.
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Figure 6.4 The path taken by i egent: implanted rules i1 the test environment.

We teet PPLS’s ability to incrementally learn by loeding a partial set of rules and placing the
agent into a similar, but unlearned situation. The goal is to have the syster add rules to the ruie
base that compensate for the unlearned environmental concepts. Specifically, we test the agent’s

ability to adjust to learn rules to retura the czaft to base.

in these teste the following set of tewards were used. Rewards are paid to the lenrning system
when a trigger condition is met at the end of a classifier cycle. The reward values for these tests

are itrom the following values:
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Better Reward  Paid out when the state of the system has improved (progreas

to the current phase objectives is raade).

Worse Reward  Paid out when the state of the system is worse (gencrally a

negative value).

Mission Reward Paid out when an objective of the current phase is met.

Death Reward  Paid out if the agent is killed somehow. (Generally negative.)

The values used in this research were chosen empiricaily and are listzd beiow. These values are not

optimised and better values probably exist.

Better Reward 50

Worse Reward -50

Missior Reward 1000

Death Reward -1060

The actual reward cituations are listed by the phase they occur. Rewards applicable to all phases

are listed last.




Phase 0 Better Rewerd  The ageut has moved closer to the enemy base (target).
Worse Reward  The agent has moved away from the target.

Mission Rewazd The agent has destroyed the target.

Phase 1 Better Reward  The agent has moved closer to ita base.
Worse Reward  The agent has moved farther away from its base.

Mission Reward The agent is over its base.

Phase 4 Better Reward  The agent has moved away from the enemy.
Worse Reward  The agent has moved closer to the enemy.

Mission Rewaid The enemy is no longer detected (out of range).

All Phases Death Reward  The agent 18 killed (by the enemy).

The rewards provide the learning algorithm with guidance on the ustfulness of its decisions and
form part of the implanted knowledge that describas a mission to the agent. Alsw aet by the reward
function is the variable MaceMatk. This is set whenever progress has been aegative over a period

of time to trigger the discovery learning algorithms (if turned on).

The foilowing tests are ex2cuted:

1 - A complete* set of rules is loaded into the cystem. Learning is turned on and the effects of the

learning algorithm on the stability of the rule base is examined over a series of runs.

2 The rule set that evoived from Test 1 iz tried in other situations where the starting position, base

locations, and enemy location are moved. This checks th= adaptibility of the rule set and the

*In the sense vhat the ru'e set can effectively control the agent through the various phases to an efficient arrival
=t the final de.cination, the friexdly bese. The rule set is not considered optunum, but just empirically sufficient
(sufficient in most aituations tested).




gystem, i.e. sees if the system with this set of rules is dritile (fails outside of the cortext the
rules were learned in or designed for).

3 Some of the rules in the rule set are removed and the ability of the system to comprnsate
sxamined. The discovery learning algorithins ave to rreate rules that allow the agent to reach
its objectives. For this test, only some rules in one phase (the Return to Base phase, Phase

1}, ate removed.
4 Al the rules in one phase are remcved. Phasc 1 is agaiu used for the vest.

% A random set of rules ars loaded inte the system and itc ability to navigate in the environment

exarinad.

The discovery learning aigorithms used by PPLS follow.

Detector Cover - This operator triggers when either no rule matches and input detector message.
I have modified the operator to also trigger when a mistake has been macde by the system,
such as when a series of negative rewards has beea received. The operator generates a new
rule that matches the input (with & /me of ths condition fieldr generalized randomly) and has
a randomly generated action. The new rule is set to have a fitness value equal to the current
population average. The new rule may be applied (probabilistically) the next time this input
i3 seen.

Effector Cover — This operator triggers when a mistake is indicated by the reward system (as
abov:) and a rule matched the input. It generates a rule that has tke same condition fields
but vas a random action. The idea is that the previous rule rnight be correctly matching
the input detecto: messaze (firing in the right situvation), but is not generating an action

appropriate to that situation.

G:netic Algorithm — The genetic algorithm triggers at a set background rate, determined prob-

abilistically. When triggered, it selscts two rules from the parents poos (a pool of rules that




are high fitness and meet anv other requirements set by the systern variables, such as being
within the curreni phase) and applies the genetic operators of crossover and mutation with a
probability set hy the system variables. A background rate of 0.1 (meaning that the operator

should fire on average once every tenth cycle) was empirically chesen based on information

on CFSC(59) and used in the tests.

In the firat test of this type, we begin with a complete stasting sei of rules and, with learning
cn (see below), execute the scenario from start to end. We then use the rule set as it was modified
by the system and repeat the test from the beginning. The intent of this test iz to validate that

the systermn can perform corractly over many activationa with an evolving rule set.
The initial rule set (in symbolic form) is depicted in Figure 6.5.

The results are presented in Figures 6.6 6.7, and €.8. The first figure shows the system on the
first execution. The second execution of the mission scenario is shown in the second figure which
shows that the route has been modifiec to increase the overall fitness of the route. The third plot

shows that learning nas reached a (temporary) steady state under these conditions.

Next the evolved rule set wae placed in a different situation and executed. The results of the

firet four runs is shown in Figures 6.9, 6.10, 6.11, and 6.12.
After this second sct of tests, the rule set evolved to that shown in Figure 6.13.

The tests show that a rule set can effectively evolve while maintaining a level of performance.
This is important if the discovery algorithms (the collection of algorithms that implement rule

discovery) are to be lcft on during system operation.
The reader is referred to the Appendix for other test results.

The results show that a partial seeding allows the system to discover a useful set of rules

after some effort. This ability to discover appropriate rules using past experience (other rules) and




; A Simple Kulti-phase operation

.
’
.
’
.
]
.
3

Inputs: Y ~ Classifier Typs, Ph = Phaso, FP = Next Phase (via PHASE cfop), Tg = Tag, THO = Target Horizonta

0C = Ordnance Count, sp = Speced, BHO = Base Horizontal Offset, AB = At Base
Outputs: Man » Maneuver

;Phase 0 - fly to target and destroy it

if
it
if
it

steering
(ty det)(pk 0)
(ty det)(pk 0)
(ty det)(ph 0)
(ty det)(ph 0)

(tho= le2t) (ot no) (sp slow) and () then (ty eff)(man left)
{(tho= left) (ot no) (sp cruise) and () then (ty eoff)(man loft)
(tho= right) (ot no)(sp slow) and () then (ty eff)(man right)
(tho= right) (ot no) (sp cruise) and () then (ty eff)(man right)

(tho= tront) (ot no) (sp cruise) and () then {ty eff)(man straight)

it (ty det)(ph 0)
(tho= frent) (ot no) (sp slow) and () then (ty eff)(man straight)

if (ty det)(ph 0)
; spesd

it (ty det)(ph 0)
it (ty det)(ph 0)
if (ty det)(ph 0)
it (ty det)(ph 0)
it (ty det){ph 0)
it (ty det)(ph 0)
1f {ty det)(ph 0)
if (ty det)(ph 0)
; Phase change

it (ty det)(ph 0)
it (ty det)(ph 0)
;Phase 1 - fly
if (ty det)(ph 1)
if (ty det)(ph 1)
it (ty det)(ph 1)
if (ty det)(ph 1)
it (ty det)(ph 1)
it (ty det){ph 1)

stopped) and () then (ty eff) (man accel)

slow) (dis FAR) and () then (ty eff)(man accel)
slow) (dis Medium) and () then {ty eff) (man accel)
CRUISE) (dis CLUSE) and () then (ty eff)(man SLOW)
FAST)(dis CLOSE) and () then (ty eff)(man SLOW)
1) (ot yes) and () then (ty eff) (man drop)

2) (ot yes) and () then (ty aff) (man drop)

3) (ot yes) and () ther (ty eff)(man drop)

(sp
(sp
(sp
(sp
(ap
(oc
(oc
(oc

(tho 0) and () then (ty phase} (np 1) (man none) op PHASE parnms 9999
(oc 0) and () then (ty phase) (np 1) (man none} op PHASE params 9999

back to base

{ab no) (bho left) and () then (ty eff) (man left)

(ab no) (bho right) and () then (ty eff)(man right)

(ab no) (bho front) and () then (ty eff)(man straight)

(ab yes) and {) then (ty phase)(np 2) op PHASE params 9999
(sp CRUISE) (dis CLOSE) and () then (ty &ff)(man SLOW)

(ap FAST)(dis CLOSE) and () then (ty eff) (man SLOW)

2 - done
det)(ph 2)

;Phase
it (ty
;Phase 4 - evade enemy

it (ty det)(ph 0)(eho 1) and () then (ty phase) (np 4)(man none) op PHASE paraxs 9999
if (ty det)(ph 0)(eho 2) aund () then (ty phase) (np 4)(man none) op PHASE params 9999
it (ty det)(ph 4)(eho 0) and () then (ty phase) (np 0){(man ncne) op PHASE params 9999
; steering

if (ty det)(ph 4)
it (ty det)(ph 4)
if (ty det)(ph 4)
it (ty det)(ph 4)

then (ty phase) op STOP params 9899

(eho= 1sft) (sp slow) and () then (ty eff) (wan right)
{eho= left) (ap cruise) and () then (ty efif)(man right)
(eho= right) (ap slow) and () then (ty eff)(man left)
(eho= right) (sp crvise) and () then (ty eff)(man left)

Figure 6.5 The rules used to test execution with learning starting with useful implanted rules.
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Figure 6.6 The path taken by the agent: First run.
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Figure 6.7 The path taken by the agent: Second run.
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Figure 6.8 The path taken by the agent: Third run.
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Figure 6.9 Different situation test: First run.
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Figure 6.11 Different situation test: Third run.
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8 117 0 (TY Det){PH 1)(AB Yer) and {) than (TY Phase)(PR 1)(NP 2){AB Yes) op PHASR -atr 1388, br 0.13, aupi .07
S 82 O/TY Det)(PH 4)(BMO -) and {) then (TY Phase)(PH 4)(NP 0)(DHO -)(MAN NONK) op PHASE -odr 6827, br 0.13, supt 0.0°
128 0 (TY Det)(PH 3) and () then (TY Phase)(PH 2) op STOP ~str 5431, br 0.09, supt 0.0°
40 108 (TVY Det}{PH 4)(RHO R{)(SP Crals) and (J then {TY BIf}(¥H 2)(FHO R{)(SP Cruis)(MAN STRAIGHT) —str 4811, br 0.16, supt 0.0°
113 O (TY Det)(PR 1){BRO FRONT)(AB No) and () then (TY Bf)}{PH 1)(BRO FRAONT)(AB No}(MAN STRAIGHT) —~str 2680, br 0,186, supi 0.0”
116 O (TY Det)(PH 1)(3P Cruis){DIS Close) end () then (TY RH){PH 1}(3P Crais)(DIS Close)(MAN SLOW) -3tz 2627, br 0.16, supt 0.0"
40 O (TY Det)(PH «}(EHO RA)}(SP Crois) snd () thea (TY I')(PH 4)(DHO R){SP Cruis)(MAN LEFT) ~sit 2487, br 0.16, supt 0.0~
82 0 (TY Dei}(PH 4)(BHQO LA)(SP Cruis) end () then /TY RH)}{PH 4)(DHO L1} (SP Cruli)(MAN RIGHT) ~str 3461, br 0.16, sups 0.0
316 0 {TY Det}(PH 1){BHO Right)(AB No) and () then (TY B)(PH 1)(BHO Right){AB No}(MAN RIGHT) ~etz 1088, br 0.16, 4apt 0.0"
106 0 (TY Des)("H 1)(BHO Left){Ali No) and () then (TY B)(PK 1)(BHO Left){AB No)(MAN LRPT) —3%: 1639, br 0.1€, sapt 0.0

63 O (TY Det)(PH0)THO LEFT)(OT No)(SP Cruis) and () then (TY BH)(PH 0){(THC. LEF'T)(OT No)(SP Cruis)(MAN LEFT)-str 1187, br 0.19, supt 0.3"
0 0(TY Det)/PH ¢)(NHO LA){3P Slow) and () then (TY BM)(PH 4)(DAO Lt){SP Slow)(MAN RIGHT) ~atr 808, br 0.16, supt 0.0°

0 0 (TY Det)(PH 0){ /HO RT)(OT No){SP Slow) and {) then {(TY R)(PH 0)(VHO RTY(OT No}(SP Slow)(MAN RIGHT) -ssr 784, br0.19, supt 0.0°
0o (TY Det){PH 1){SP Faui){DIS Close) and () then (TY Bf)(PH 1)(SP Faut)(DIS Close)(MAN SLOW) ~rir 784, br 0.16, supt 60"
0 0 (TY Det)(PH ¢)(EHO R1)(SP Siow) sad () thes (TY De)(PH ¢)(BHO Ri)(SP Slow)(MAN LEFT) ~84. T84, br 0.16, sup4 0.9"

21 0 {TY Det)(PH 0){(THO LEFT)(OT No){SP Slow) end {) then (TY Bf)(PH 0)(THO LEFT)(OT No)(SP Slow)(MAN LEFT) -str 088, br 0.1¥, supt 0.0°

108 (108 0) 124 (TY Dut)(PH 1)(BHO Left)(AB No) acd () shes (TY W) (FH 3)(BHO Lrft)(AB No){MAN RIGHT) ~etr 1 br0.30, supt 0.0"

Figure 6.13 The rules in the system after the second set of tests.




a set of heuristics (the discovery algorithms) is an important advantage of genetics-based learning

gystemns in changing environments.

When a randem set of rules (or no rules) is ured as the starting point, the agent is mostly at
the mercy of the discovery algorithms. In these cases the results were not as promising, with the
learning system taking more than 1000 cycles to converge, if at all. This is contrasted to the 100

to 200 cycles for the previous tests.

The resulta indicate that the better (more usefui) th: starting rules used to seed the initial
rule set, the better the performanc: with these discovery algorithms. Better discovery algorithm

directly influence this performance, since they narrow the search heuristically for usefu! rules.

It was found that allowing the discovery operators the ability to create and modiiy the phasing
rules lead quickly to the system creating rules that lead the system: down blind alleys without easy
recovery. The STOP rule action also posed a similar problem, since the system would quickly
learn to stop itself and avoid any further work. Therefore rules using these rule actions are treated
“gpecially” in that they cannot be deieted from the rule population and they cannot serve as parents
for the cover operators. We treat these rules as mission-dependent goals implanted inte the system,
rather than execution instructions to be learned and used. With some restrictions, however, it
should be possihble to set up a system thot can learn the phases the agent needs to interact witk its

environment. We elaborate on this in Section 6.4.

The specific discovery operators used in this task were the detector cover operator of CFSC-
1, a modified version of the eflector cover operator in CFSC.1, and the genetic algorithm. The
cover detecior operator looks for situations where no rule is addressing a current detector input.
It then copies and modifies a existing rule so that the condition tield of this new rule matches the
input detector message and so fires. The action is usually inappropriate, but the genetic algoritim
can vse this new raw genetic material to build mo.e useful rules thet address the situation. The

cover effector operator is triggered whenever the variable Mader stk (made mistake) ia set in the
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reward routine. In PPLS this is done whenever no action is generated by the learning system. This
assumes that some action available to the agent, even flying straight ahead, is always appropriate.
The operator works by copying a rule that fired during the current cycle (such as one generated by
the cover detector operator) and modifying the action of the rule to form a valid effector control
message. In PPLS, this routine was modified to concentrate on actions that are allowed by the
interface, removing wildcard bits from these randomly selected trial actions since they are ignored
by the interface. The idea is to reduce the complexity of the interface level to as simple 4 level as
possible. The modified operator also copied the majority of the state bits from the condition of
the rule, unlike the CFSC-1 version that generated totally random actions. The genetic algorithm
functions similarly to the standard version in Appendix A, crossing and mutating the bits of the
rule strings. The genetic algorithm provides the main inductive mechenism in the system, though
the cover operators provide a limited amount of generalization (changing random bits to wildcards)

and specialization (changing random bits te 1’s and (s).

Effective rules could be evolved by the PPLS system. The learning system required a large
number of rules, however, to provide the dircovery algorithms with enough genetic raw material for
the genetic algorithm to manipulate. Although the cover operators effectively made connections
between the detector states (the stimulus) and the effector-generated actions (the response), the
genetic algorithm provided the inference engine that manipulated this raw material until a useful

set of rules evolved.

6.3 PDP.C

This section was to examine the PDP-C system interface and the performance of PPLS as an
agent controller within it. The PDP-C part of the interface, however, did not correctly interpret
the control information from PPLS (ignored it) due to a bug located in the PDP-C system code

Insufficient time remained to include any susiantial tests of that interface.
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6.4 Discussion

The ability of the agent to support learning in on-line environments is a basic skill that allows
the agent to ndapt to unforeseen events in the environment. The tests have shown that a limiited
amount of learning can be supported while maintaining » reasonable agent behavior, though this is

dependent on the les created by the learning algorithm and varies from execution to execution.

Even if the agent “dies”, however, the learning algorithm is given a useful piece of information
that can be used to reweigh rules in an attempt to prevent the cause of death from recurring. This is
a situation encountered in any concept learner that uses observation and experimentation to predict
useful concepts (acceptable actions) within an environment(4). Eventually the learning system

should amass enough concepts to adequately predict the best action in any situation encountered.

The PPLS learning model is simpliscic, however, and this can be aeen in the need to instruct
the system (via a set of rewards) as to what is important in each phase of execution. If a set ...
operatora were previded at the rule level to provide reward generation, then the phasing system built

into the rule structure could also control (ne rewards associated with each detected environmental

state.

One area of further study not addressed fully here is the implementation of a dietic detector
state representation that changes based on the context of the situation (see Section 3.3.2). This
18 implemented to some degree in this system by using a generic distance field that measures the
distunce to whatever is the current object of interest: a target to approach or an enemy to evade.
Such state representsations can reduce the needed number of bits in the message fields and allow

cither a simpler detector space to search or a more complex environment to be encoded.

Further study of Booker’'s methods of niche generation seem appropriate to allow multiple
concepts to be learned and stored {within the rule population) during each phase(4). One 1eason
a large rule population was needed was to prevent convergence of the entire population on one

concept. Niching techniques may be one alternative to reducing this problem.
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Another area to be investigated is the creation of a moz= robust internal model of the outside
worid within the learning system. This model currently is represented by the rules (concepts)
learned and used by the systemn. A prediciive model that is updated based on the observed behaviors
of objects in the environment can provide inputs into the state representation of the system. For
instance, a field in the detector message structure ray warn the learning system oi the anticipated
approach of enemy fighters when it enters enemy airspace. This piece of information can let the
learning system react in a prediclive way, thus implementing lookahead without rule chaining. This
ie similar to the two-level approach used by Booker to isolate environment prediction from action
determination (see Section 3.4.2). This division of prediction from action agrees well with the

distributed approach we propose.

The learning of phases might be implemented as follows: The :aitial phases of the system are
set up as for the previous tests. Then, whenever the system encounters a situation it hasn’t seen
befoze (possibly measured by a lack of useful rules), the system creaies a new phase and places
the learning system in it. When the situation again changes (as measured by a significant change
in detector state, for instance), a jump to a phase that has matching rules is made. A PHASE
RETURN rule action could be used to reiurn the learning system to the phase before the new

phase, providing a subroutine approach to solving a problem.

A useful mechanisn. for the PPLS system would be one where trap rules could be implemented
to prevent the system from performing actions that it just shculdn’t do. For example, while the
svstem was learning, it had the habit of dropping ordnances on any location it happened to be over.
A strong ; cnalty steered the learning system from this tehavior, but it is disturbing nonetheless.
The trap rules would ensure that certain conditions (such as being over a valid target) were met

before the action could be executed. Such rules could be programmed into the system with the

phase rules to guide the systems behavior and keep it within “respectable” norms.




Many pc iential improvements are possible. Some of these were presented eartlier in this thesis,
while cthers can be found in the classifier and machine iearning literature (such as in (36) and the

F1'P archives noted in Section 7.8).

6.5 Summary

We have seen in this chapter how thz PPLS system performs in both simple and more complex
environments using implanted rules and rules generated by the discovery algorithms. By effectively
limiting context (the domain space) the learning algorithm can be made to perform efficiently
though. as in any trial and error learning system, the performance is significantly degraded when

the system is learning riew ccncepts to hundle a new situation.

The CFSC-1 system proi.des a wealth of tools to address the learning problem. Some of these
tools, hewever, wers specialised for the test domains of their auihor(39) and need modification to
be uszd in an agent control application. Also, the reused code is rather messy and undecumented in
parts {especially the areas that implement the discovery algorithms) and this hindered tracing the
actual reazons for many observed system >ehaviors. Further comment’ 'g and program execution
traciny should be done if this code, the standard public domain classifier syster, is used for further

work.

Many new features can be added to the PPLS system to facilitate more complex learning
strategies. These include the modified phasing and reward operators of the last section and more
generic refinements of the system in *~neral. Other methods, such as instructed learning, could be
added to allow the system to learn new rules as it interacts with its environment. Finally, better
monitoring facilities can be implemented to better follow why the system gencrates its responses,

allowing improved insight intn how the system cai be further improved.

The next chapter pulls together the results of there tesis and relates them to the topics

discussed in previous chapters. We shew that the aystem implemented has the potential to address
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the criteria we presented in Chapter 1. We also address other issues concerning the impl*menting

of autoromous aircraft ageats in simulated environments. Finally, conclusions and areas of future

research are presented.




VII. Conclusions

Thia chapter summarizes the results of this research effort, prigsents conclusions and suggests
future areas of investigation. We first exainine the efficiency of the PPLS learning system, what it
was able to do, and how it might be improved. Though empirical 1n nature, theae results suggest
limitations in the implementation as well as guide !ater exarnination. We alsc evaluate how well
the criteria and goals addressed in Chapter 1 (see Section 1.3) were achieved.

We then analyszz the environment inierfaces and how they both helped and hindered the
learning system in achievicg its goals. We critique each of the environments and their interiacing
needs.

We then present an analysis of the scalability and practicality of this approach and discuss

pcssible parallel implementations of PP'LS. We also address the practicality of using this architec-

ture in larger, more complex domains. All are issues that must be considered if an architecture is
to be effectively used in complex simulation environments.
Finally, we present the conclusions of this successful investigation and note future research

potential.

7.1 Summary of Re:lts

This section summarizes the results of the testing described in Chapter 8. The specific test

data are in un appznaix (Volume I7) of this thesis.

The implemented system showed an ability to <ontrol the agent’s activities in the test envi-
rotanent. This demonsirated that a rule-based classifier system could provide an adequate ~ontrol
stiucture. Also demonstrated was the system’s ability to interface with this environment and zon-

trol the beuavior of the agent via the effector interfaces. These are both important in an agent

controlling tasx




The systei 1 also demonstrated that a phasing system implemented within a standard classifier
system could effectively control the focus of the system to a specific task and that this fecus could he
changed under the coniroi of the detector interface and ultimately the enviroament. This capability
is importaut when the agent’s mission consists of a set of taska to be accomplished. The phasing
method is one way to implement a rule-niching scheme within tke classifier system and resulis
showed that it was effective in this capacity.

What was not adequately shown was the abiiity of the system to “quickly” learn rules in a new
environment. I do not believe that this is a problem with the environment nr the basic structure of
the implemented system, but & result of the poor discovery operaters originally encodad into the
PPLS system. Better operators are currently being tested and support the conclusions that follow,
but ineufficient time was available to incorporate them here. These results are presented instead in
an appeadix.

Also presented in the appendix sre lacer teet results using the PDP-C intexface that were not
included in this thesis for lack of space aud duz to their late derivation. By making minor changes in
the detector message encoding and incorporating new discovery ci:erators, some interesting results
were obtained. An analysis of these resulis are also included heie. Most of the conclusions that

follow, however, are not restricac to the specific test results.

7.2 Mecting the Research Goais

One quertion to ask is if the implemerted systern m=zets the criteria we set out to achieve.

These criteria a.e repealed belov [see Section 1.3):

1 The tearning sysiem in to demonstrate control ¢f a simulsted aircraft in each of the target
enviconments.

= Thel i e at f a multipie-goal task to how that ii i ble of 1

2 The learning sye eir ix to perform a multipie-goal task to liww that ii is capable ef controlling

the cirvraft aod tringng @ through o entire mission {sequence of tasks).
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3 The controlled aircraft ie to interact with its environment in a simple but “intelligent” way.
4 Real-time execution and interaction should be addressed.

a. The learning syatem is to demonsirate conirol of a simulated asrcraft in each of the target

environments.

The control mechanism uses a new phasing system that selected a subset of the rule base
as the active rule set of each mission phase. By isolating each subset of rules, niches in the rule
population could develop that specialised in handling the situations that occurred in that phase.

‘The phasing system essentially added another level of control to the flat rule structure of standard

clagsifier systems (see Section 5.3).

Effective control of the autonomous aircraft agent was demonstrated for tests using the in-
ternal test environment under simnple conditions. Execution stepped bztween the different phases
of the test mission and the rewards of each mission guided rule creation and credit allocation.
Adaptation of the rule set under changing environment conditions wae demonstrated (see Chapter
6).

Though simplistic, the rule structure should be scalable to larger rule sets and more complex
detector and effector spaces. The literature suggesis a limit on this scaling, however, based on
the overall complexity of the problem (56). This can be mitigated to some degree by the .se of

heuristics in the discovery learning algorithms to guide the system in its search for rules to try.

The utility of this approach in other environments was not demonstrated due to implemen-
tation problems in the target PDP-C system in one case, and the early stage of development for
the DIS interface and environment. I believe, however, that this approach can be applied to these
other environments since the interfacing layers should be able to isolate the learning system fiom
the environment differences. Although the rules may not port to the new environments, and the

rules structure itself may have to be chang:d, the general approach and the implementation here
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should be interfaceable to these environments with minimal actual software change (other than the

data conversions of the interface layers).

b. The learning system is {o perform a multiple-goal lask to show that il is capable of conirol-

ling the aircraft and bringing it through an entire mission (sequence of tasks).

The phasing system performed well as a control sequencer system. With the discovery algo-
rithms turned off, the system performed as expected, effectively activating sets of rules applicabie
to each task to performn. The ability of the system to jump between phases, as when the enemy
came into view, was avoided and vanished from view, then came back into view and again had
to be avoided, shows that control of the phasing system can adapt to the needs of ithe agent and
condition in the environment. This is important since a purely sequencial rule phasing mechanism

cannot adopt to such situations.

When the discovery algorithms were enabled, the system continued to perform the phasing
function well. 'The discovery algorithins were not allowed to use the PHASE or STOP rules as
parents for other rules and were not allowed to select these rules for replacement. This was necessary
to ensure the stability of the control structure!. By limiting the discovery operaticns to changing
the rules in the current phase, rule isolation could be maintained. This was important to the
system “remembering” the rules of other phases, since the discovery algorithms tended to use the
entire rule space to find new rules in untrained situations®. Rule isclation prevented this since it
prevented changes to the other subpopulations. Each phase was also restricted to a fixed maximum
percentage of the changing rule population to prevent a phase from adding new rules until it took

over ihe existing free space’.

! An ares of future rescarch noted later ic providing the learning system a way to modify the phasing structure,
thus allowing it to estentially write its own agenda.

3This is known as convergence in the genetic algorithm Lterature. Sec Appendix A.

3Since the rules of each phase aie protected from replacement by ancther phase, however, this restriction may not
e needed. By allowing rules of all phoses with below average ftness to be replaced by any other phase, removing
this restriction vould allow a “pool” of replaceable rules tn deveisp and be used as a scratch pad by the currently
active phase. Further tests are needed to determine which approuch is best.




The results of these learning tests showed that rule creation can be supported within the
phasing structure and that rule isolation prevented new rule creation runaway, as expected. The
efficiency of the system in developing new rules that were useful varied, however, depending on
the discovery algorithms used and the seeding of the initial population available to a phase. One
question that came up was whether to allow the diacovery algorithms access to the rules of other
phases as parents and so as seed rules. If the rules in such a parent phase are similar (such as
between the Go to Target and the Go to Base phases), this enhanced the learning in the system. If
the rules are counter or irrelevant, then tnis could have a disrupting effect on agent learning. For
these tests the algorithms were given access to the entire population* If a dietic approach is used to
message encoding, then an isolation approach would probably be needad, since the interpretation

of detector messages would change as the phase changed.
¢. The controlled aircrafi is to inleract with its environment in a simple bui “sntelligent” way.

The rules and interface structure implemented limits the learning environment and so how
the learning system had to adapt. This was intentional to allow measured tests of the performance
of the structure. For the environment tested, the results were very positive — the agent interacted
with its environment in a productive way. This must be qualified, however, when the learning
algorithms are at work, since any trial and error process is prone to produce negative results on

occasion. (How to minimise this is addressed later.)

The question remains, however, as to how much learning was actually done. Using the
measures addressed in Section 2.1 where we defined learning to be the improvement of performance
within a specific environment, then successful mission completion in a minimum number of steps
would be one such measure. Most of the tests showed that the learning system could perform better

as the rules in the system evolved, and so showed that the system did indeed learn.

#This is controlled by a system variable.




The rate of learning was largely dependent on two characteristics: the discovery learning
algorithms and the seed rules in the system. Better algorithms that used heuristics to specifically
build potentially useful rules (such as rules that correctly specified an action the system could
perforin) greatly enhanced the learning process. The learning performance also greatly increased
when seed rules that operated on the appropriate inpuis were available to the genstic algorithm as
models te build new rules from. In an entirely new situation, these aced rules might come from a
randomly generated population of new rules, if the population wae large encugh to produce useful

seeds.

Though much improvement is possible in the aystem, it did perform in an “acceptable”
fashion most of the time. There is still some tendency for britileness to form in the system as
specific examples are used to train the systern. The input data representation and the set of

training examples used can go a long way at minimiging this brittleness in these systams.
d. Real-time ezecution and interaction should be addressed.

The execution rate of the core learning system (minus file input and output) is quite fast.
The complexity was noted as roughly O(Nin? Nc), where Nm is the number of messages (on
average) each cycle and Nc the number of rules in the system At present the interfaces used are
al} I/0 bound, so measurements of the system’s speed while interfaced to an environment is not
possible. Execution of the systam with a loaded rule base and no interfaces but a simple PPLS
test environment built into the system show execution rates of 100 to 1000 cycles per second on
a Sun Sparc2 workstation. Thie is encouraging, since the system has the poiential to be parallel

distributed to further increase this execution time.

Even so, execution rates of many times a second (generally governed by the speed cf screen

1/0) were commen for the previous tests. As long as muitiple-cycle reasoning is not implemented

(such as lovk-ahead) the system should meet wost simulation real time requirermnents, Even with




these additions, the overall execution time is still within a 0.1 sec update rate that is usually

sufficient to contiol aircraft agents(8).

7.8 Enhancing Leurning

One way to enhance learning in the PPLS syatem is to limit input and output complexity
through the uee of filiering. As Creffenstette noted (Section 3.4.2), the tendency of these systems
to fail to find useful concepts (rules) increases quickly as the domain space is increased. This is the
reason we have argued for keepiag the detector and action spaces of the learning algorithm simple
and leave the “grunt work” to the filter interfaces. Any deductive or formula transformations in
particular are inappropriate to the concept learning system. These should be performed by cther
subagents of the autonomous agent and the simplified results mapped to the learning systemn’s

input and output apaces.

Second, efliciency must be based on thie needs cf the application. 98.9 % efficiency in lea:ning
concepts from examples may be needed in some environments, but a much less efficiert system may
be useful iz other environments. The tolerance the environment has for mistakes is a key factor.
Another is the types of mistakes the agent can make. Flying in the wrong direction may not be
detrimental to the agent, but flying into another aircraft might be. The measure of efficieacy in
leaining concepts has to take into account the utility of the learned conceptls. The idea of restricting
the actions of the agent to those that “make sense” 18 another form of filtering. When the learning
system tries to do something that is easily detected as not desirable, thz interface should refuse to
do it and indicate the error to the learning systern. An example is when the learning system tries

to drop an ordnance while not over a target.

One might argue that we are telung the system everything and leaving nothing to the learning

algorithm. ‘This is nnt true. We may be providing the criteria and gauges of performance, but not

the actual execution of actions to get to it. The system is being told to work at meeting some goal




or objective, and then being left to develop the rules to reach the goal. If the goal is possible, and
the rewards sufficient to guide the system, the actions necessary for each detected situation of the

environment will be learned.

What [eedback knowledge is supplied to the agent is also important. The learning system
must Le able to measure the success (via rewards) the effectiveness of the changes it has made in
the environment (perceived via the detector interface). This cause and effect relationship allows
the system to build a model of its environment via the rules ir ils rv'e base. In complex systems
it may be that only experience over time will provide safficient feecback to the agent as to wkich
concepts are actnally useful. Therefore it may be difficult to judge the worth of a concept taken

outside of a useful context.

The forming of relatively isolated population niches also seems important to the efficiency
of & class:fier-based learning system. These systems have a tendency to generate volumes of rules
addressing the current problem, which is one reason they are so effici-nt(36). This action also forces
other uaeful rules out of a limited size population, which leads the lezrning system o “forget” con-
cepts it i:as just learned. The phasing appreach we presented ie one attempt to limit this population
growth. Others, such as Booker’s restricted mating policies and envircnmental prediction-action
separation®, are others (see Section 3.4.2). To handle more complex environments, implernenting
subpopulations within phases to allow population niches to service the specific needs of the agent
may be essential.

The learning system architecture of PPLS has the potential to be an efficient and useful
decision maker in a complex simulation agent. The environmental filters and the concept learning

system should be taken as interdependent parts of a learning system architecture.

%1.c. the ueparating of environmental pred ction rules fromn action generstion rules.




7.4 The Environment Inlerfaces

The interfaces designed for the PPLS system have attempted to astandardise the form of
information at each side of the interfaces. This format of the data structures is determined on the
environment side by the environment being connected to the sysiem. On the PPLS side, we have
tried to maintain a consistent data structure and mapping. By treating the interface itself as a
layer in the interface structure or a filter that converts information on one side of this layer to the
form needed by the cther, any similar environment should be interfaceable to the PPLS system if

an appropriate interface filter is added to the interface.

The rest of this section discusses how the environment influenced the form of each interface
and how this effects learning in the system. Emphasis is on mapping the actual decision domain
(the domain the agent must make decisiona about) from the rest of the environment inputs and

outputs.
The Internal Environment

The internal test environment was based on the PDP-C interface and so is file oriented. The
simulation provided by this interface was crude but provided a sufficiently robust interaction to
allow the system to learn useful behaviors. Since no other interface was reliably operational by the

end of this research effort, no tests could be made as to the portability of the rules learned in this

environment.

By reducing the variables (state dimensions) of tkis environment, the learning process was
made easier. However, many of the complex telationships of a more sustantial aircraft environment
should be mappable to this simple set of detector inputs. And adding additional output functions
would not he that difficult either. This allows the overall PPLS learning syatem component tu be
mapped to more complex domains by changing the message format (tu add more fields and change

others, as necessary) and the input and output filters.

PDP.C Interface
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In any simulation that is linked to real time, the synchronisation of the aimulation to the
learning systemn is desired®. This synchronisation was achieved via a set of data files and a set
of semaphore files. The use of Unix pipes was used to force each program to stop until the data

written by one was read by another.

This approach was workable, but depended on setiting up Unix named piped for the com-
raunications paths. It also limited the control of the data paths to some degree’” A more versatile
approach would be to use Unix socket connections to provide the communications. This would
allow for better moritoring of the status of the pipes (socket pairs) thus generated, as well as more
control over the status of the I' .es. However, the ability to do this in Clips is not clear at this

point.

The need to read and ~rite 2OOL object records forced the development of the slot_io
package for the PPLS system. T} s package is still not what it should be, since it inteipretg the
cLject records line by line, and t: e text object records use parentheses to delimit record slots. A
betier package would pars: the rarentheses and build the internal slot representations based on
this parsing. This car get very c »mplex, however, especially since the slots bave to be written back
out in a COOL-reac. ole form i. after changes to the slots are made. There was no t me to pursue

this, however.

Finally, as wit1 any such interface, the interpretation of the data quaatitiez bec \me a problem.
The PPLS syster. ses a degree-based, compass-like orientatior system, for instauce, while FDP-C
uses s radians-l.ased trigonometric-like system. The interface layer provided the conversions, but
this added anc.her area of uncertuinty into the interface that had to be tests. But this is what
interfaces are v - to isolate these dependencies so that other parts of the systemn don’t have to

deal with therr. The interface package did this well.

® Alterna’iv-ly, both systems could run independently and synchronise via event coordination or time stamps (as

in 0DIS).
"This was more a limitation of the Clipa/COOL language than of the named pipes.




Limilations of the PDP-C Environment

The PDP-C system currently runs at about one update per second. This update rate is rather
slow for interacting with human-controlled objects in a DIS ~nvironment And even this rate is not
guaranteed. A key problem with the PDP-C implementation is its heavy dependence on external
files. Many delays in execution I b:lieve can be traced to the poor performance of the AFIT ethernet
and file servers, which handle over a hundred workstation and other systems continuously. If all file
1/O was replaced by named pipes to waiting processes on the same workstation (such as logging
processes, etc.), this might speed things up considerably®. Running the system on a multiprocessor
Silicon Graphics system, with the agents distributed, may also help. Other methods are also

possible, but are more involved than these.

One other limitation of the PDP-C system is the complexity increase each new ageni adds
to the system. As noted earlier, a DIS interface would likely require each external object to be
internally sirnulated as a craft agent, probably ss another edcraft. In a complex world there might
be many things interacting with the PDP-C simulation at once, which might overload the system
rather quickly. Also, the system does not support many external world features {such as mountains
and tanks), and so would be limited to air engagements without sone modifications to its in.ernal

world simulation.
Interfacing to DIS

Once the PDP-C interfacing requirements are removed, the PPLS system has the potential
for much fester operation. The minus side is that the system would require agents to take care
of all the functions now being done by the PDP-C wimulation environment. These include radar
detection, flight equation implementation tracking of otlier simulation objects, etc. Much of this

corle currently exists, however, and a complete system should be buildable.

$No sctual mneasurements were made, but other tests suggest a factor of ten .peedup may be possible. What ja
not known is how much of the proceasing tiune war spent executing input and vutput and how much wes taken by
the rule matchirg and execution operations. The aystem has beet observed to slow down considerably during seme

phascs of iis operation while maintaining the same levels of file access.




The Distributive Interactive Simulation interface proposed should let the PPLS aystem be
interfaced to an active DIS simulation tiet. There was no ‘ime to test this, however, and the DIS
interfacing efforts continue. By adding the needed layers of filtering. inclnding a realistic flight
mode!, the s}’ .m should be able to interact with its environynent. The message encoding would
need change, however, since the number of variables would inziecase, and each would nced to be
represented (in as simple a manner as possible) as a field in the detector messages. Aleo, the
reward system ‘would n=ed o be modified if multi-agent interactions are needed. (Only one enemy
is supporied a’ this time, and no friendly aircraft are represented in the detector state model
implemented.) These changes should allow for = simplistic agent behavior that can be used as &

starting point for more complex agents.

The DIS interfacing code is currently being written by another AFIT researcher and should
be rcady early next year. An object-oriented approach should make the inclusion of mulsiple
simulatior. agents bused on the BDIS PDU message system relatively simple. If dead reckoning? is
ignored in the system (i.e. objects are taken to be at their reported locations and are static until
the next update), then a set of cbjects that merely store the information provided in the received
PDUs would creat: a simple system that could later be updated to include more sophisticated
techniques. If designed right, snch a DS interface could be used with other syeiems besides PPLS.

The key iy ir the laye.ed interface as detailed in Section 4.3.

7.5 Praciicality and Scalabilily of PPLS

This szction looks at th': practicality of scaling the PPLS system to more realistic levels of

domain complexity. Such a gzaling may involve increasing :ither the domain space, the action

¥ Dead reckenity s a technique used in the DIS standard te implement sn optimistie discreie event simulstion
environsment. Sine: updates on sluw neiworks are spaced relatisely far apart in time, each participating simulation
uses dead “eckoning teckniques to determine wrkere the object would be given ita inst reported location, velocity, and
wr.celeration - pretty wach as if the objzct was “dead” mnd just comsting. The protiem is that the guess predicted
by the observing simu'ation iaight be wreng, in which cas: past events baard on this information rmust be “fixed"”.
This has interestiog effects wlien someone who wae “shot down” suddenly is;.’t and is now shooting at you(189:74)...
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space, or both and rnay require additicnal filtering in the interfaces. Additionsl systems may also
be interfaced to the learning system, requiring coordinstion of these inputs. The actions required of
the agent may be more complex and requite sequrnces of actions to be learned. Finally the meassage
list, rule list, and other system storage may need to be increased io handle the larger number of

possible concepte the system must handle. These concerns are addressec. in this sectiow.

7.5.1 Limiiing coinpiezity.  As noted previously in this chapter, guactics-based classifier
systems (and concept leazning systems on the whole) musi search expc aentially larger rule spaces
as the mumoer of possible input states and the number of possible actions increases:®. Thie limits
praciically the sises of the invut and output spaces a system can deal with to a relatively small value.
Though geuetics-bagad classifiers can process large rule bases dealing with large detector and effector
spaces, the complexity of the rule space limits the effectiveness of tue discovery algorithms and
theretoie tie ability of these systems to adapt to their environment. This is one of the limitations

*hat must be overcome in a practical learning system that can deal with a complex environraent.

Ay noted throughiout this theais, one such approach to limiting the rule space complexity
is to limit the possible number of states and actions the system must recognize and generate.
Gince the complexity of the environment can’t typically be decreased, we propose using a set of
iransformations to map the significant characteristics of the environment to the learning system
domain and another sel of transformations to map the outputs of the learning system back to
the environinent. We -allec’ these transformations filters and interface layers previously, but the
function is the same: to take the complex characteriastics of the environment and represent them

in a simpler way that 18 within the limits of the learning system to deal with.

This approach implies that such a mappingis possible and that the complexity of the process is
within the processing constraints ¢. the real-time agent syst:m. We argue that most of the filtering

needs o1 the system are infact typically deterministic processes. For example, the derivation of

10 Assuming an unfiltered interface to the domain.




the Target Left signal to the learning eystem is derived tarough » set of calculaticns based on
orientations and offact anglss. These angles could have heen encoded into tne learaing system
detector messages, but would have added considerable complexity o the detector space. The
required information {in this siriple aystem) was juat a relative measurc. Fven in more complex
environments, most of the relevant information can be represcnted in a simple form of low cardinality
without significant loss of diccriminating potestial, We believe that this is witere most of the filtering

in autonomous agents must take place'*.

Complex actions can alsc be reprzsented simply to a large extent. The autonomous aircraft
agent can learn that a maximum turn rate dive is the best maneuver in a particular situation. How
the maneuver is actually dc e need not be known to the learaing system for it to decide that i is
the right maneuver for the situatior. '’hie maneuver can be passed to an interface filter that carries
out the maneuver itself in an autunemous way. Tae key to this appreoach, ws argue, ic to provide
enough subagents to accomplish the generation of uny behaviors needed by the egevt within the

time and processing limitations.

Thus we treat the inputs to the overall agent as inputs to sensors that preprocess information
to the learuing system aud the output« as the responses of subagerts to control signals from
the learniug system. This approach isolates the learning system within a filtered model of the
environment that can be simule envugh to apply discovery learning techniques. If the layering
and filtering of data is suificient (more than one layer can exist betwsen the environment and
the learning system, and, in fact, different inouts and outputs be filtered differently) then simple

behaviors can effective!y contrel complex environmental actions and reactions.

1T further make this point, animals, su the ethologists vell us, are driven by relatively basic and sumple decision
procesaes. These arvcesscs rely | eavity on the an‘mals’ rznses ena other preprocessing subsystems to filter the rays
of light entering their vyes, for instance to the simpie relationship thst, #ay, & bone is on the dinner table. A dog
wanting the bonz probably docs not perform any specific cidcalations, bul insteaa reacts t.o the relsiive positions of
the objects and a set ot simple rules that deseribe ihem. The dug leane its forspaws on the edge of the tatle (which
it believes will support it}, reaches with its movth uniil it makes centact, and grabs the bone. In a similar way the
complex datu from the snvironmert can usually be fillered to 8 wimple level within the learning sbility of a simpie
discovery learning =ystein.
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Another way to reduce the inpnt detestor space complexity is to use a dietic approach where
the detector space is dependent on the context of the situation. Dietic representations allow the
input space to be time-sequenced in that {he only inputs provided the lesrning system are those
needed to make a decision about the current gituation. This ie quite si:nilar to our use of phases to
limit the effects of a rule subpopulation to those situations for which the rules epply. Dietic repre-
sentations juet expand on this by removing the input information not used by a rule subpopulation
when that subpopulation is active. An example based on the PPLS system ia to remove the base
location information from the detector messages when the system is in Phase 0 and trying to locate
and destroy a target. This information i not needed during this phase and merely adds length to
the message (end increases the state space). Such a methed, though, requires controls to ensure
that the detector upace is properly interpreted*?. Enforcing phase isolation is one method of doiry

this.

Further filtering is possible in such agent systems by placing constraints on the ailowable
actions of the system. The PPLS system, for example, does not use a complete action encoding,
and so there are some action codes that are invalid. New rules created by the diecovery algorithms
should not use these codes since they cannot lead to effective actions {except doing nothing).
Some actions are also invalid in certain contexts. For inastance, the dropping ordnance action is
inappropriate anywhere except above a valid target. This can be checked in the effector interface
and the learning system scolded (penalized) whenever it tries to drop an ordnance on the wrong
place. Other checks can be done heuristically to limit the actions in rules to those that have

potential to he useful!3,

These methods can limit complexity of the domain and action spaces to a point that the

genetics-based classifier system can be an effective rule discovery and processing system and a

130therwine a rule expecting to find the target location in field 4, for instance, might find its own base position

and go off and destroy that instead.
13The actual usefulness of a rule can only be determined by the agent through experience in the environnient. A

perfectly Ygood" heuristic can generate rules that are juist not effective in a particular environmente! state.
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viable coutreller for awionomave aircrafe sganty. There is ulwaye ¢ penalty for suca filtering, since
it preventa tae leas ning aysten from rescting to tie “law” inputs from the environment — it Lecomes
denendent on the intarpretatione pansed it fronn the Slserc, 1t is for this rzasor. most that we srgue
in fevor of beeping the complexity of il inpgut and outpuy filtere siraple to allvw them Lo he reliably
implemeried and tested. complex filters can leadt to Javs 1n ravironmental irterpretziion and sn

tc rtrange or even drastically wrorg behaviersld,

Y55 Ir conespt leurning aypropriate?  This is a queation that needs t2 be asked. One of
the major premices of thie research is that all situa.ions not requiring an intezasl chaining of siates
car be hardied by the concept 1rarniung approach. Since the condition parts of concept {decision}
rulee can repregert nearly anvthiag, thev can encode the aurrent state of the environment, the
availalie actions, and the experted ontcomes of these actions. The learner then could decide if a
particular course of sction is {ruitful based on ite ability to label sach suck stace as uzefvl (i.e. apply
the concept of “useful™ to the japui exar:ples) and then choose the most action decided to be the
(potentially) mosu uneful. We saw that sich a system would be essentially a reactive system, but
still could handle enmplsx Lirae-dependent behaviors as long ae +he environmentai state presented
it inclnded wutficient fimc-dependent data. In this way conceot learning can be applied to any

situat.on that the agent may find itself in, if the filter ntarfaces provid: the right data.

Multiple decision psoseibilities are ther represented by multiple rulee that each represent a
recornmended action for & given state. The system then choos:s these actions by choosing the rule
to fire based on its fitness which v based on the rules past performance. The rules of each nich:
in the rule base thus address how a particular situation can be mndeled az a set of voncepts. Fuch
conr.anf s & Action the 3ysiem can perform and the classification being done is to place the system

state represented by the current detector messages into the appropriate action concept.

'21f the intespretaiion ir consistent and the rewards sppropriste, however, thun the system might still learn to
resac, eppropriavely, in effrct learning to corrertly inap the wrong duta to correct reactions.




7.5.3 Multiple sources of inputs. Muliiple input sources shouid not be a problem since
they can be enzoded into the single message vector. The PPLS architecture allows, in fact, multiple
detector messages to be generated by the interface. If each message is somehow tagged as to source,

then ccplex encodings (of & dietic form) are possible.

If the multiple inputs can be time-divided, however, then a phased approach would allow each
such iaput source to be handled in relative isolation, and so keep the complexity of the domain
space down. This is impo1tant if effective learning is to be maintained. The interface layers should

kandle the time-sharing of the learning syst=m, as discussed in eariier chapters.

7.5.4 Single-goal hypotihesis.  One limitation built into the implemented system and the
phased approach is the single geal hypothesis, which we define as the limiting of the learning system
to obtaining a single goal at a time. This was necessary to allow the activation of a set of rules
appropriate to a specific task under cuntrol of the phasing mechanism. In this section we analyze

the effects of this limitation.

First we note that this limiting assumption is not unique to PPLS. Many systems (such as
the MAXIM and PDP-C systems already discussed) use an agenda to focus the systern on a specific
task at a time. Though multiple objectives may be coded via rote learning into the system, this
agenda approach is intended to specifically limit the system and allow a clear logical flow from one

specific gnal to the next.

Modifying the agenda allows some variation in action, such as when a new environmental
state requires a change in the agenda of an agent. Still, although the agenda can be said to adapt
te changing conditions, only one goal at a time is being pursued by the system. Otherwise a form

of conflict resolution would be necessary when reaching the goals require conflicting actions.

The implemented learning system PPLS, using a stochastic parallel rule firing approach is
possibly less bound by this assumption than many other approaches. Since the actual rule fired

at any time is based on the expected utility of the rule given an input state, the system is free to
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switch between goals every other cycle if the rules for the two goals are in the same subpopulation
and the rewards from the environment support this activity. Though each phase is thought of as
isolating the rules for a particular mission task, in effect all the phasing mechanism really does is
set up subpopulations meeting the current needs of the environment in that given environmental
state. Thus the PPLS system is capable of learning (via implantation or via discovery) to deal with
multiple goals. We make the single-goal hypothesis in this system only to organise our human view
of the problem. In a complex environment it may be likely that the system learns a complex set
of rules that throws this hypothesis out and so is hard to interpret!®, but works fine in the given

environment just the same.

7.5.5 Comparison to other approaches. This approach ia comparable to other approaches
being used at AFIT to control autonoraous agents. It is a rule driven system with an agenda
(implemented via the rule strengths and also by the detector interface as the states presented to
the system trigger a sequence of rule niches) that is overall governed by a mission-executing phasing
mechanism. Without the Bucket Brigade to update rule strengths or the discovery aigorithms to
change the rules, the system would be very similar to other rule processing systems, except for the

trinary alphabet low-level rule encodings.

Adding the bucket brigade to predict the utility of rules (credit allocation) and the discovery
algorithms to modify the knowledge structure (discovery learning) provides -apabilities in PPLS
not available in many other approaches. PPLS works (for now) at a relatively primitive level of
detector and action encodings. However, the system implements to some degree all the learning
strategies we believe important to autonomous agents (including rote, deductive, and inductive) and
no systern fcature expressly limits building on this implemented frame work towards systen » that

can handle more complex environments. It is this pulling together of the various learning strategies,

18This iv related to the ides of sxbsymbolic learning that classifiers and neural nctworks can exhibit(48).
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as well as symbolic and subsymbolic representations, that malke these systems so potentially useful

in controlling autonomous agents.

7.5.6 Environment inieraciion. Can the PPLS system handle the complications of a real
environment? I believe simplicity is the key here. Facn part of the system perfermis a relatively
simple function, including the learning system. This means that additional (poseibly learning)
subagents are added to the sysiern as the tasks of the system increase to maintain the complexity
levels to manageable levele at all points in the PPLS systemn. Also important is the use of all the
types of learning described in Chapter 2, including the implantation of “canned” rules into the
systems to get them started. Building a pilot is not an easy task, and we believe that it should
not be tried for in one super-complex system. A distributed system of siraple parts is (potentially)

much easier to track and maintain.

7.6 Parallel Implementation Potential of PPLS

Th= system as it stands has many components that can be distributed over & parallel archi-

tecturc or a network system. The two areas to examine are the filter interfaces and the core CFSC

system.

The filter interfaces are modeled as objects with fixed input and outpnt data structures and
should be easy to distribute between nodes. The key here ie to minimize the data exchange betw=en

these filters to reduce coupling and communications costs.

The complexity of the CFSC system is mostly based on the processing of each message by
each rule via the matching process. This matching process is mainly independent for each rule,
8o one potential partition is along rule boundaries. Robertson has shown that the CFSC system
can be implemented on a CM-5 system with one ruir on each node(59). Such a partitioning would
not be too difficult for the current system. Messages would still need to be distributed, adding

communications costs, but the computational complexity of the system would be now O(Nm?),




with the number of messages (Nm) being much smaller typically than the number of rules in a
large system {Nc). This cculd be & large gain over the current O(Nc * Nm?) of the system. Further
parallelisation may be possible, but would increase the coupling between nodes. The effects of this

need to be examined before this is done.

‘The other fe 'ures of PPLS should not severely restrict a parallel impleimmentatioa, since most
of the complexity ot “ke vore loops are individual checks that can be parallelisable. Dividing the
rule base up and lacing it « different nodus sesms the best way to do this. The message list
provides - ost of the syctem interacti. and would best be accessible by each node, forcing some
form of update f each node’s copy as reqnired or the wre 0. hared memory. Otherwise, there
should be no lim.t to how finely th» -ule base is -+  ed. This gives real speed potential to the

. /st as a whole,

7.7 Conclumons

‘The overall results of this investi, av.e That g onetics-heoed o assifier systems can be used
to implement agent cor-iro! le. ziing e8t. a8 within certain - xt L is gection summariges the

points presented earlier in this chapt: - au« :n this . =sis.

The general . oprouch used 12 ° - investigation was to reak larger problems into smaller
ones. his approacti leei - itpe b asx:d rule niching approach and to the distributed interface

filter: g architectur Botr »f the+se ‘in . the complexit: ti e . arning system must dea. with.

"his ap,rroach we dew, nstr ed in Chapter 6 by the iniplemented Phased Pilot Learning
iysi-m (PPLSY ¢ »d war  bls (v navigate an agent throuy 1 « simple environment where the ef-
= cuveness of o behavior o1 ihie agent depeded on the state the system was in. There was no
agaificant Jimii Ten ti evented the eniargic. " the ob.ses of the system to include more

re: ognized mussion tasks anw the overall app »a-h 'lows the system to shift rule subpopulaticns as
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these phases are recognized via the detector niessages and the conditions of the rules that govern
phasing.

Though not tested, the potential for phaae creation during a mission was noted and would
allow the agent to create a new set of rules, separate from the successful rules of other phases, to
address the requirements of a new untrained situation. The system as its implemented wilows the
rules in other phases to act as seed rules, which increase phase learnign efficizncy if Lhe rules are
similar. Otherwise, the discovery algorithms generate new rules that are evolved by the genetic

algorithm into a subpopulation that meets the need of the new nicne.

The interface filtering allowed the learning aystem to concentrate on the re’evant aspects of
the environment, filtering out details not important to the current decision process. Though this
filtering approach places a burden on the filters to provide useful and relevant data, this approach
was shown to minimize rule space complexity and allow the system to adapt effectively. How much
filtering to provide is a trade-off issue and is dependent on what defines a stat * in the environraent.
Enough information must be presented to the system to allow the concepts that divide the states

into appropriate actions to form.

The filtering approach also matches other models, such as the DIS architecture model, and
promotes portability of the system to different environments. Though other environments were not
tested, the design for these interfaces (especially the PDP-C system interface) was shown to be
easy enough to implement. More complex environments would require more filtering, but keeping

each layer simple should make such an implementation easier to build and test.

The PPLS systern implements various learning strategies, including rote learning (via rule
implantation), deduction (via filters that process input data to usable forms and filters that translate
the responses of the system to action sequences valid in the environment), and induction (via the
discovery learning algorithms). Each of these learning strategies play an important role in allowing

the agent to effectively perform in a changing environment with & minimum of rules.
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Overall, the design was ghown to meet the objectives siated in Chapter 1. The system
implemnents varicus lcarning strategies and uses distributed filter interfacing to reduce agent control
to manageable levels. The phasing rule system sllows coucepts to be learned by the aystem and
rememt.ered for future use. Each of these components are important to allowing the PPLS system
to effeciively control an agent. The implemented system showed how it is feasible to implement
this design and get it to work. The algerithmas of the eystem ave stili rather crude, however, and

further refinements snould provide baiter performance still.

7.8 Future Research

Many areas of potential future research exist. The creation of “etter discovery operators,
possibly using environment-dependent heuristics, would greatly enhance the rvle discovery process.
The currant operators, mainly modified versions of the “canncd” CFSC mechauiims, are still quite

ineflicient. Better discovery operators and t.iggering rmechinisms for these operators are needed.

What should be filtered and what shouldn't needs to be carefully addressed. This issue
has implications to all agert controllers, not just PPLS, and can form the basis for a standardized
network interfacing system (perhaps based ou the DIS raodel) that other autcnomous agent systems

could benefit from.

Better encoding of information into the message structuze is possible. Many current research
studies'® are addressing the different ways that uiching can be used to enhance performance in
ciassifier systems and how best to encode concept information. These methods are directly appli-
cable to the PPLS system and should be easy enough to impiement in the structured PPLS and

CESC scurce.

In summeary, much is left Lo do. This rescarch effort should be considered just what it is: a

feasibility study that shows the potential for further investgations.

1%For instance, the latest papers fro.o the Navy's Artificial Intelligence Center (AIC), which are available via
anonymoua FTP to FTP.ATC.NRL.NAVY MIL that there waa no time ts include here.
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Appendiz A. A Review of Genetic Alnoritsms and Genetics-Based Learning

“his Appendix reviews the basice of genetic algorithms and how they can be applied to

machine learning applications.

A.1  Genetic Algorithms

Genetic algorithms are search algerithme based on adaptation and natural selection. They
can be used to guide the construction and restructuring of knowledge representations within a
system and so adapt the system to its environment. These systems use a building block represen-
tation where all possible representations of knowledge (such as the rules in a rule-based system,
for instance) can be formed by assembling these building blocks in different ways. This allows a
genetic algorithm to construct new knowledge representations cut of existing ones using genetics-
like operators (such as genetic crossove: ard mutation) that operate by rearranging these building
blocks. Representations (population mmbers) that perform better ars rore likely to be selected to

propagate their characteristics (buiiding blocks) to later offapring via the genetic algorithm (12, 22).

Genetic algorithms maintain a population of potential solutions from which they build new
pupulations of revised potential solutions. For computational reasons, and to promote selective
presaure on Lhe candidate sol -tions, these populations are limited to some fixed size. The algorithm
selects a percentage of these member solutiona, perforn:s a set of genetic-like operations on these
parent solutions (dreeds them), and replaces a percentage of the population with the new potential

solutions.

Key to this process is a filness function which is used to rate eacn solution’s ability to solve
the problem. Those sclutions with higher fitness {the butter solutions) are more likely to be selected
for breeding, while those soluticns with relatively low fitness (poor solutions) are most likely to
be replaced by tke children solutions generated during reproduction. Thus, due to the relective

pressure che competition forma, a set of good soiutions built on the good parte of other solutiona



quickly forms. After a set number of breeding cycies, the most fit of the popilation members
are taken as likely solution(s) to the probiem becing solved (22). Note that genetic algorithms are
probabilistic-based, and can give different solutions when run multipie times on the same problem.
For this reason, most applications that use genetic algerithms run the algorithm multiple times
~d take the best solutions of the runs. They can alsc miss the mark entircly and fail to converge,

giving rise to the concept of GA hard proble.as that are diffic i for GAs to solve.

Genetic algorithms are limited in their usefulness by the iossible waye a population member
can be encoded. The most typical method of encoding, that of a binary string, allows the algorithm
to easily form new solutions by awzpping bit strings betwesn pairs of strings (i.e. the crossover
operation). Other representations are possible, including integers, floating point numbers, and othes
symbolic forms. In the case nf numbers, some arithmetic operation, such as incremental adjustment
or averaging of parent values is used to derive a new value for a particular allele {(gene position)
in a child. In symbolic representations, some form of subsyrnbol modification is used, which makes
the implementation of the genetic operators quite dependent on the solution representation used.
Proper choice of the gene encoding inethod ix crucial to a successful genetic search (10). This is
especially true in machine learning applications, where many different methods have resulted in

varying degrees of success (12).

A.2 A First lllustrating Ezample

The following example may make thie a little more clear. Here, the task is to find the root
of y = 27 — 25. Now forget for the moment that one can just plug this into the quadratic formula
and get -+5 and —%. For simplicity, the range of z is also limited to the range ~8..7, which 18 the
binary representation of a 4-bit two’s-.complement integer. The problem, then, is to find those 4-bit

two's-complement binary strings that make y zero.
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The next step is to select a fitness function. This function is key to the genetic algerithm in
that it is the only feedback available to it on how well the search is going. For this problem, f is
chosen as f(z) = 130 — abs(z? — *5), which results in a maximum of 160 when 2? — 25 equals zers.
Decreasing fitness values (i.e. best is lowest) can also be used, but is less intuitive. Note that the
number 100 is not particularly special, but is just a number that keeps the result posiiive. (The
range of f is 100 — (82 — 25) = 461 to 100 — (52 — 25) = +100.) The goal is now to find the 4-bit

binary string encoding of # that maximiges the {itness function.

The genetic algorithm requires a set of operators to manipulate these bit-string representa-

tions, The three most common are selection, crossover, and mutation. These are described below.

Selection is how the algoritkm choses which strings to operate on and provides the selective
pressure that allows it to converge on to high fitness solutions. Typically those population members
(strings) with highest fitness are most likely to get selected. Many ways exist to do thia, but for
this exarnple the sirings are sorted by decreasing fitness value and a form called roulette wheel
selection is used where the fitnesses are added and a random number between sero and this sum is
selected. The population members’ fitnesses are then summed until the sum exceeds this random
fraction of total fitness. Another selection scheme uses the fitnesses to rank the population and
then using the rank to determine the member's chance of selection. This ranked-based scheme has
showed promise in kesping a population from prematu~ely converging, which is what happens wher.
a few high-fitness merabers of the population begin to receive exponentially-increasing numbers of
offspring and so crowd out viner, but potentially useful population members. The goal is to prevent
coonvergence until an optimal {or at least sufficiently optimal) solution {member) is found. Until

then convergence is to he asoiced.

Croasover is used to exchange genetic information hetween two potential solutions in the hope

of generating i better solution. It serves ar the means to redistribute the higher fitness building
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blocks of » poputation a4 it forms new candidate solutions from the higher fitness current members
of the population.

Complezity.! The genetic algorithm is of polynomial order complexity with a finite space
v quirement determined by the population sise. Although Goldberg (23) suggests that there is an
optimal population sizse which depends upon the length of the string, there is no fixed dependence
betweea the length of the string and the population sise. Experimentzl evidence, however, suggests
that an insufficicnt popalation sise may adversely affect solution ~uality (22)(46). The terms in
the order of the gunetic algorithm reflect tue length of the string as well as the number of atrings
in the population. An entire cycle of the genetic algorithm is executed up to a maximum number
of generations apccified by the user. The basic pseudo code for a genetic algorithin is presented

below.

initialize population
calculate fitness for all members of the population
for i = 1 to max_rumber_of_generations (m)
for j = 1 to population_size (n)
cCrossover
evaluate fitness
mutation
end loop
selection
end loop

The sarious genetic operators each have associated maximum complexities although complex-
ity of an actual implementation may differ. The crossover operator selects two strings from the
populaticn pool (n), picks 2 random jocation alor.g the length of the string, and then swaps the
two tails of the parent strings which follow the randemly selected crossover point. This portion can

be considered to he O(l) since it needs to traverse the length of the string.

The fitness fusction includes a call to decode the string representation into the value in
the problem domain. This decode call could be an O(1) or an O(l) function, depending upon

the string representation scheme and the programining environment capa bilities. Evaluating the

!The following ma‘erial is borrowed, with permission, from Olsan's +  “k(563) und is & collaboratiou between him

ana Don Brinkmann.
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fitness function should be an O(1) operation since it simply subatit:ies the deccded string valies,
and evaluates the objective function. Howevce:, for complex problems, the evaluation of the fitness

has a lower bound . the or der of the objective function —the functions bei-g optimised.

Mutation also could be an O(1) or an G(n) operation depending upon the particular imple-
mentation and also the mutation strategy being used. Studies have shown good regults are obtained

with a mutation rate of once for every thousand string position t ransfers (22).

The selection functicn has an O(n) complexity since it must implicitly or explicitly evaluate
each member of the population to determine which strings will be carried on to the next generation.
Actual implementations of the selection operator may be of O(n?) complexity, such as a roulette

wheel approach biased according to the fitness of the strings.

This makes the complexity cf the entire algorithm

O(m » maz(n * maz(l, fitness function, n), n?))

which is equal to

O(m + n « maz(l, fitness function, n)).

A.3 Theory

This section introduces schema notation of genetic algorithms. Then the fundamental theory
shows that genetic algorithms produce increasingly better populations. This material ie extracted

from Merkle’s thesis (46:16-20).

Scherva. Goldberg develops an estimate for the performance o1 the SGA({22:28-33). Thecreti-
cal analysis of GA perfc ‘mance makes extensive use of schemata, or similarity iemplatis. Schemata
are strings composed of characters taker from the genetic alphabet, with the addition of the “don’t
care” choracter. A scheina thereby describes a subset of the potential solutions. For example,

the scherma t»wwxses represents the set of all 8-bit strings which contain a 1 in the first position.
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Likewise, the schema 14###2%0 represcnts the set of all 8-bit strings which begin with a 3 and end

with a 0.

The defining length, §{ ), of & schema is the “distance” between the index of the first specified
position and the index of the last specified position. For exam: '~ §(1s#4#404) = 7 — 1 = 6, while
6{(1#s4s408) = 1 —1 = 0. The order cf a schema H, which iz denoted o H), is the number of

specified positions in the schema. For example, . (1###++4¢) = 1, while 0{11111111) = 8,

The schema concept can be extended to apply to absolute and relative ordering problems.
Following Kargupta(38), an absolute ordering sthema defines a set of valid perinutation strings.
For example, the absolute o-schema ! 1 ! & ! 1 represeits the set of all permutation strings for
which the second and fourth positions contain alleles 1 and 5, respectively. ‘This o-s<%icima is distinct
from the standard schemata #+ 1 # & ¢ ¢ in that the formear requires that the string represent a

valid permutation, whiie the latter does not.

Following Goldberg(22), Kargupia uses rs‘(H) to denote the set of all valid permutation

strings in which the alleic. specified in H occur ix the specified order. For example, rs%(1,5)

represents ali permutation strings of length 6 i which the allele 5 occurs after the allele 1.

Fundamental Theorem. Defining the average fitness of a string matching a schema H to be
J(H), the avzrage population fitness to be f, and the nurmnber of strings in a population at time ¢

which match the scherna to be m(H,t), the effect of the reproduction operator is

m{H, 1+ l):m(}{,t)!«(-}lz—)- (A.1)

Noting that crossover disrupts a schema c¢uly when the crossover point occurs within the

defining length of the schema, the probability of survival urder crussover for a schema in a string
of length ! ia

6
P> - pe !—(-_ﬁ—l) (A.2)
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where p. is the probability of crossover and the inequality is used to reflect the fact that crossover

may not actually disrupt the schema even when the crossover point is within tl.e defining length.

The probability of survival for the abowe schema under the mutation operator then can be

estimated as

Pras % 1 — o(H)pm, pm € 1 ‘ (A.3)

where p,, is the probability of mutation. Combining these results and omitting negligible terms

gives an estimate for the expected number of examples of a schema in the next generation:

f(H) [1 - Pe f(_Hl) ~ o(.H)p,,,] (A.4)

m(H,t+1) > m(H,1) 7

This is referred to as the Fundamental Theorem of Genetic Algcrithms, and can be interpreted
as stating that “short, low-order, above-average schemata receive exponentially increasing trisls in

subsequent generations” (22:33). This result aiso goes by the narue of the Schema Theorem.

Genetic algerithms have many advantages over conventiona! solution scarch techniques. First,
they allow a natural evolution of solutions using a Darwinian survival-of-the-fittest approach to
improve the knowledge in the system. Anoiher advantage of genevics-based systems, which use
populations of knowledge representations, is the inherent parallel nature of such systems, and the

quick processing this allows (10, 22).

A4 Applications

A genetic algorithm provides solutions to search problems. Since GAs require no knowledge
of the probiem, they are welil suited for problems for which no known algorithm exists. Cseaetic
algorithms may also be beneficial to problems in which all known algorithms take unaccepiable

time to execute.
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Tnie sectinn diviaes gearch problems inie two major categories: functional vptimisaiion and
combinatar.al vptimizetion. An example of a functional optimigation is finding the minimum of
f(=,9) = 100%(2*—¥)? +() —2)?. An example of & combinatorial optimization problem is inding the

shor.est circuit which cuntains all veriices in a fully connected graph {traveling ealesman probierr).

Continuous, infinite search space characterize functional optimisation problems. Discrete.
finite scarch spaces characterize combinatorial protlems. Although a functional problem may have
an infinite sesrch space, eny computer realisation eventually requires the search space to be dis-
cretiged to a finite domain. The size of the search spuce then becomes a funciion of the desired

accuracy, ir addition te the number of parameters.

Funclional Cplimization. There are many approaches to functional optimisation. Differential
algurithms use brute force mathematica to derive the minimum of the function. This anpreach,
however, only works when the finction is differentiable. For non-differentiable functicns, gradient-
based or hili-climbing algorithms can be used. A gradient-based approach uses a greedy type
algorithm to direct the search in the most promising direction. The greedy algorithm cperates on
the Lasis ot local decisions to guide the rearch toward the globally optimal sclution. Tuis approach
worka fine for simple.: fuuctions, bt does not perform as well or complex functiois containing many
minimia. Censequer..ly, a moze robus! search strateg) must be applied to avoid being trapped by
loca) minima. Mcnt : Cario randon search, simulated arnealing, and genetic algoritnms are s-arch-

based atgorithms which are aipplicable to sptimization of comrplex functions.

The ecarch space for a function consists of tne domain of th. variables contaivned ir. the furction
to be optimiged. The solution will be the set of n values, where n is the number - variables it the

function, and f('1;, v3, vy, ..., v,) 18 cither a maximum or minimum scluvion depending on the type
y V2, ¥y, y Ui

of optimisation being performed.

Sclution of f(zy, 22,23, ., €a) = [v1,v2,¥3, .., Va)
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The application of genetic algorithms to functional optimisation problems involves two things;
the encoding of the domiain or search space as a genetic sting, and the implementation of the fitness
function, which is simply the function to be optimizxed. T he genctic algorithm evaluates the fitness
of each member of a population of strings, and awards an increasing number of copies to stings of
above average fitness, while decreasing the overall number of strings with below average fitness. The
effects of crossover serve to combine the positive aspects of two strings into one solution. Eventualiy,
the solutions which correspend to the strings in the population, reach a point of optimal or near

optimal solution quality.

Combinatorial Oplimsization. Combinatorial problems attract much attention within the Ge-
netic Algorithm commurity. The Fifth International Conference on Genetic Algorithms (21) pub-
lished papers on vehicle routing, traveling salesman problem, and set partitioning. An entire sessiou
of the conference focused on scheduling problems. This section presents two combinatorial problems

which represent different aspects of combinatorial encodings.

A.{.0.1 Task/Process Assignment. In this problem, m tasks t; are to be assigned
to n processors p; in a way to minimige completion time of all tasks. Let the atring consist of m
genes which can take on one of n allelez. Each gene’s locus (i) corresponds to a task (t;) while the
gene’s value (j) represents the processor (p;) io which the task is assigned. For illustration, assurne

a problem of six tasks (m = 6) to be assigned to four processors (n = 4). A possible encoding is

143214

This encoding states that

t; assigned to
t; assigned to p4
ty assigned to p3

1. assigned to p;

-~

s assigned to p;

ts assigned to py4
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The user provides a fitness function Lo evaluate the encoding and the GA does the rest,

A.4.0.2 Traveling Salesman Problemn.  Some combinatorial problems present prob-
lems to the traditional (?A approach (22:170). These problems are characterised as solutions which
represent order. A five city traveling salesman probiem illustraies i+ problem with crossover. Let
the lecus of & gene represent the order in which citier {specified by tre value of the gene) wre vie-
ited. The first gene represent the starting city, the wecond geno repregent: to- sacond city visited,

ect.... The £fth gene vepresents the fifth city visited mnd return to e first oity w unplied. Let the

following strings represent two solutions in a population,

Parent 1 =1 23 4 56

Parent 2= 1 3 5 4 2

and let the crossover point be 2 (a point hetween the second and third genes).

Parent 1 =1 2] 3465

Parent 2= 1 3| 5 4 2

The result of this crossover ig

Child t =12 54 2
Child 2= 1 3 3 4 5

. Note that both children represent invalid solutions. Chld 1 visits city 2 twice and doesn’t visit

]

city 3. Child 2 visits city 3 twice and deesn’t visit city 2 at all.

Several approaches exist to fix this problein. Our approach uses a heuristic Lo repair any
broken children. Another approach user a penalty function to decrease the fitness of any invalid

children.
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A.5 Computer Program Development

‘This section provides pseudo code based on appendix C of Goldberg’s book (22). That ap-
pendix provides Pascal code for a simpie genetic algerithm. Some simplifications where made for
clarity: statistical reporting was eliminated and the data structure was modified to more resem-
bie an object-oriented design. Note that the GENESIS code widely used is slightly diffsrent in
implementation.

Data Definstion.

allele-type: boolean
chromoscmo-typs: array[l..max-length] of allele
fitnesa-type: real
individual~type:
racord of
chromosone: chroaonome-typs
fitnesy: fitneas-type
ond record
pop~type:
record of
individaal: array[i..pop-size] of individuala
sur-fitness: real
sige: integer

chromosome-size: integer
end record

Conirol Loop
pop: pop-type
old-pop: pop-tiye
matel: chromosons~type
Matel: chromosome~typs
childi: chromosome~tyne
child2: chroxmoaome-type
BEGIN
USER SETS pop.size, pop.chromosome-size
initialize(pop)

FOR EACH GENERATION
old-popx= pop
SET pop.sizes= Q
WHILE pop.sixze < old-pop.size
satel= select(pop)
rate2= select(pop)
crossover(matel .mate2,childl,child?)
pop.individual [pop.popaizel= childi
pop.individual[pop.popaize+1]~ child2
pop.size= popslze+?
ENDWHILE
NEXT GENERATION
END




Evaiuation.

inpat/output
indivic:al: dindividual-type
BEGIN
individual . "itnesw= PITHESS (individual.chronosome)
END
instialize.

input, utput
pop: pop-iype
BEGIN
INITIALYZE i=0Q
POR i * to nop.size
FOR j= 1 te pop.chromosom~-size
SET pop.individual[i].chromosome[j]= RANCOM(0,1)
HEXT j
NEX?T 1
WD

Celeci.

Fe pop-type
t oueo- ttamse fitness-type
| T 'itness typse
uty.
indav. .idl: sodgridual-type
+EGIN
SET " arqet-+. ress= RANDOM(O. .pop.sum-fitn-ss)
INITIA ZE. o = 0
INITIAL 2E .
WHILE 5.0t <« .axrget-fitress

T 2 TN §

slots  ilet ¢ :op.individual(il. fitness
ENDWHIL.
RETURN (.o andis 1dual {1}

ERD




Crossover.

input
Pop: pop-type
matel: chromosone-type
natud: chronoscme-type
output
caildi: chromosome-type
child2: chromosome-type
BEGIN
IF CROSSOVER DESIRED (BASED ON CROSSOVER PROBABLITY)
SET cxrosapoint= RANDOM(1..pop.chromosome-length -1)
ELSE
SET crcaspoint= pop.chromosore-length
ENDIF
FOR j=1 to croaspoint
¢hildl.chromosvme[j]1= mwutation(aatel.cbrorosome[jl)
child2.chroncsome[j]1= mutation(mate2.chromosoxne[jl)
KEXT crosspoint
FOR j= crosspoint+l to pop.chromosome-length
childi.chromosoma[j]= mutation(mate2.chromosoneljl)
¢hild2.chromosonre[j]l= mutation(matel.chromosome[jl)
NEXT j
evaluate(childl)
evaluate(child?)
ERD

Mu.ation.

input/output
allele: allele-typs
BEGIN
IF XUTATION DESIRED (BASED OF FUTATION PROBABLITY)
sllela= not alleles
ELSE
ailele= allele
ENDIP
RETURN (z1llele)
ERD

A.¢ Softwar= Avaslabic

Software packages described in this section comes from a compilation in Parallel Genetic
Algorithms: Theory and Applications (18). These packages are available on thor (the parallel

network) under

/uer/gsnstic/Softvare.




GENESIS. GENESIS (GENEtic Search Implem 1tation System) was written by John Grefen-
stette in 1981. Since 1985 it has been widely distributed in the research community. It is written

in C and has beer implemented on Sun Sparc Stations and IBM compatible PCs.

O00GA. OOGA (Object-Oriented Genstic Algorithm) was writien by Lawrence Davis to

support his Handbook of Genetic Algorithms (10). It is written in LISP.

Splicer. Splicer was written for NASA/Johnson Space Center. It is written in C and de-

veloped on Apple Macintosk. It has been ported tc Sun Sparc workstations using X-windows

interface.

A.7 Other evolutionary-based methods

Here we briefly mention some other methods based on evolution that the reader should be

av. are of,

.imulated annealing operates very similar to genetic algorithms, but use only one population
m:mber and an annealing schedule to control the probability distribution used to assign new values
to the member. In brief, a paramter called _mperature is used to determine a likelyhcod that the
evolving value may take on a worse value, based on ite fitness function, than it currently has. Asin
the settling of molecules in real metal annealing (where the process has its origins), large jumps to
higher-energy arrangements of molecules (worse fitness) are allowed when the temperature (time
to go) is high. As the nystem cools (evolves), however, smaller jum;iu ir. the less organised direction
(to worse fitness) are allowed, until the system finally reaches a cooled (evoived) state. The key to
the success of this method is the proper choice of annealing {cooling} schedule. See either Davis or

Murusabal for mc-¢ on annealing(52:36)
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Bunlutionury search systems have also been derived that depend more on evolvicg multiple
populatious of sclutions using mutation as the primary force of change. The reader is referred to

the lutest ICGA proceedings for more on this new technique.

A.8 Machine Learning and Genetic Algorithms

Discovery learning is a form of learning that focuses on observation and experimentation
(12). The key difference between this form of learning and, say, guided discovery or learning from
examplea is that in discovery learning no specific learning guidelines are given to the learning
systern. The system must determine for itself what is an example or useful event to observe and
what is not. While learning by observation is simply trying to interpret what is happening in the
ervironment, learning by experimentation allows the system to interact with the environment, try

things, ard see the results. Discovery learning includes both of these methods.

The advaniage of this type of learning is that its autonomous, i.e. can be dene with no
outside guidance. This means that a system using this learning approach can be trained by just
“plopping” it into the environment and letting it explore. An autonomous opponent simulation
with this ability could poteniially learn to dog fight and drop bombs by observing these activitiea

and experimenting with the possible actions allowed to it (banking left, activating the bomb release,
ete.).

Genetics based machine lenrning uses genetic algorithms to guide the construction and re-
structuring of knowledge representations and allow a system to adapt to a {possibly caangiug)
environrent.

The recent ndvances in genetics-based learning has opened the possibility of using these
techniques as part of real-time systems that require some form of machine learning capability.
Experimentai resulte in many applications areas show that genetics-based learning aystems can

velatively quickly adopt to simpler {typically single task) learning situations (12, 22). However,
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little work has hieen done applying these techniques to more complex applications (40:9-10), thvagh

some experimentation has been done (for example, (27, 36, 77)).

One method of managing complexity is by using multi-agent systems (MASs). These are
systems that cortain multiple agents, autonomous systems that react to their environment. Agents
can be intelligent (incorporating Al techniques) or non-intelligent, and can cooperate to varying
degrees with the other agents in the system. Multiple agent systems allow complex adaptive tasks
to be broken up into smaller tasks that use specialised agents to perform functions such as route

planning and sensor processing, thus managing the overall complexity of the system. (24)

A.8.1 Current Genetics-base Machine Learning Techniques. There are four basic ap-
proaches to using genetic algorithms in machine learning applications: parameter-based methods,

“Michigan” classifiers, “Pitt” classifers, and evolutionary programming (12).
Parameter-based techniques

Parameter-based techniques operate by defining a set of function parameters that describe
the particular problem to be learned. Typically these parameters describe various controls that
can be “tuned” (adjusted) for optimal performance. This technique is very similar to the typical
genetic algorithm application, where the algorithm searches for a best (or near best) solution to the
problem. Here, the fitness function is exiernal to the learning system, however, and the algorithm
must find a set of parameters that allows the controiled function to give an adequate response (as
determined by the environment) for any environmental input. Since the varying of one parameter
can affect the correctnesa of other parameters, finding a setting of all parameters that perform well

for all allowed inpnts is a combinatoric problem tending towards NP-complete?. See pages 61 - 101

2A combinatoric problem is one that requires an incr-nsing number of calcvlations to solve as the sise of the
input data grows. NP.complcte preblems are those combinatoric problems that gencrally take a deterministic search
algorithm an exponentially increaaing amount of time to solve as the amount of input data increases. These are the
hardest search problems to solve due to the extensive amount of computer time needed to examine the exponentially
growing number of possible solutions and are virtually unsolvable for large numbers of input parameters, unless
some form of heuriatic (a method for deciding which of many alternatives is moat promising (54:3)) is used (67:40)
{BB:343-344) (9:916-983).



and 104 - 108 in The Handook of Genetic Algorithms by Davis (10) and the various applications,
especially the rubot trajectery example (10:144-165), in Part I1 of this reference for more on this

method, including examplex of its use.

Classifiers.

Classifiers are systems which receive input messages (encoded data strings) from the envi-
ronment, match these messages against the condition part of rules (classifiers) in a rule set, and
generate some actior: if a rule’s condition string is matched. There are currently two general ap-
proaches to classifier system design, the “Michigan” approach and the “Pitt” approach (12). These

are each described below.
“Michigan” classifiers.

The “Michigan” approach was developed at the University of Michigan as part of John Hol-
land’s efforts to adapt genetic algorithms to machine iearning applications {12). In this approach,
the genetic population represents a set of rules, each composed of a condition part and an action
part. The condition part consists of one or more (depending on the design) patterns (conditions)
that are compared against the input messages from the environment. If only cone rule’s condition
part is satisfied, then that rule’s action part is gencrally allowed to fire (execute). 1f multiple rules
match, then typically some form of arbitration takes place, such as a bidding auction where rules
bid a fraction of their current fitness. One (or more, depending »: the design) of the winning
rules then get to fire their action parts. Actions can either generate outputs to the environment
or generate new messages, which are placed on the mesrage liat with any new messages fromn the
environment and can trigger other rules as if these new measages came from the environment. This
sequenvial triggering of such coupled rules in called chasning and allows an environmental input to

successively trigger multipie rules and outputl complex responses over time (12) (36:chapter 4).

“Michigan” classifiers learn by establishing rules to handle the various environmental inputs.

A mechaniam called the bucket brigade, where rules that fire pay a portion of their fitness to



the originator of the message that triggered them, allows payoff from the environment for a good
responge to be passed back (indirectly) to those that started the successful chain of rule firings.
Rules that don’t result in payoff or in another rule firing will slowly lose their strength (from bidding
to firc, etc.) and will die out. In this way, a chain of rules that doesn’t resuit in eventual payment
will be starved out rule by rule. This process lets the successful coupled chains grow stronger (and
more likely to be selected to provide the system’s output) and the less successful rules and chains

to die out (12, 36).

Classifier condition parts typically are binary strings of ones and zeros, which are mostly
encodings of the solution parameters into one string. To facilitate some generalization in the
matchings, a wildcard symbol is used to represent either a one or a zero. 'This allows a single
classifier to match multiple input messages and allows & generalization of the rules to take place
as the system learns. Wildcarding also »llows the building of default heirarchies (12)(22:247-254).
In a default heirarchy, different rules have different levels of generality {specificity). More general
rules will tend to match more input messages. The action parts of these rules, however, is generally
not the appropriate response to all of these input messages, so more specific rules emerge to cover
the exceptions. This leveling of general and specific rules is cited by some as key to the learning of
complex information (36:34-36, also 190-220).

New rules are induced into tue ‘Michigan” claesifier using various chain-forming tachniques as
well as a genetic algorithm. The genetic algorithm, in particular, locks at the pieces of successful
(high fitness) rules and builds new children rules from these building blocks. These rules replace
the less fit of the population, thus increasing the potential overall fitness of the rule population and
the overall performance of the classifier system. Thus, the genetic alycrithm provides the major

learning mechaniam of “Michigan” classifier systems (12).

“Pitt” rlassifiers
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“Pittsburgh” or “Pitt” classifiers operate a bit differently than the above “Michigan” systems.
In “Pitt” classifiers, zach population member represents not a siugle rule, but an entire rule set
encoded into the string. These classifier systemns work by setting up a population of possible
rule sets. This population is then tested, member by member, by running each rule set through an
evaluation function that provides a set of environmental inpuis and tests the outputa for Lorrectness.
Each rule set is given a fitness rating from these tezts. Then the genetic algorithm is used to breed
the population of rule sets, with the children of better performing rule sets replacing the less fit

rule sets. In this way, rule sets of high fitness (i.e. best adapted to the environment) emerge.

“Pitt” classifiers optimize rule sets in a way similar to that used by standard genetic algorithms
to optimige function values. Thie approach has many consequences. First, the adaptation only takes
place when the genetic algorithm is run, and not while the rule sct is actually being used. This
makes it difficult to judge the usefulness of individual rules in a rule set. Second, this approach
doee not have any direct method of forming default heirarchies or coupled rules, ao the rules thus
generated tend to be specific {o the test cases provided by the tester during rule set evaluation.
Both of these tend to result in “Pitt” classifiers evolving brittle rule sets (12, 34}, i.e. rule sets that
are optimized for the test cases used to train the system, bhut that tend to perform less successiully

on related but unlearned cases and alse on noisy inputs. Research continues in this area (3).

Evalutionary programming

Evolutionary programming techniques are similar to the rnle-based classifier systems, but
instead manripulate parts of programs instead of parts of rules. Most research ia this area has taken
the evolve and v apprcach (12), which is similar to the “Pitt” classifier approach. Current work
includes Koza’s work with LISP expression manipulation (41, 42). This appzoach tends to suffer

from the same brittleness characteristics that affect the “Pitt” classifier systems

A.8.2 Current Trends sn Genetics-Based Learning.  Current trends in the field of Genetics-

based Learning include adapting the hasic classifier systems to better address the problems asso-
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ciated with them, and forming hybrid systems with multiple genetics-based components or with

genetics-based components as just one of many agents in the system.

Most work at improving classifiers has focused on the “Michigan” systems. Efforts include
adding triggered rule discovery and rule clustering via Booker’s GOFER system (72:265-274),
modifying the bucket brigade (72:311-216), adding variables (72:344-339) and fuszy constructs
(3:346-353) to the rule sysiemas, and others (72, 3). Riolu’s work at adding hypothetical states
to “Michigan” classifiers (47:316-326) and Muruzabal's work with a database scanning Adaptive
Predictive System application (52) are some of many examples addressing the “forgetfulress” of

these systems.

Hybrid systems have also emerged, including Grefenstette’s SAMUAL system (27) and Dorigo’s
multi-layer classifier systems (15). Work with animats, software representatious of simple living
creatures, have generated many new approaches to adapting learning systems, including genetic
algorithms, to the task of adapting to the outside environmeat (47). Multi-agent sysiems have
gained new interest, inclading the work by (24) and others. Merging genetics-based approaches
with neural network systems is also attracting much research effort and shows promise (10:202-221)
(51).

In asddition, Holland, et al., suggests many other ways that classifier systems can be modifier
that have yet to be fully researched (36). Much remains t be done in the field of genetics-based

Learning.
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Apperdiz B. Classifier System Basics

This appendix introduces the reader to the basics of classifier systems. This material was
already introduced to some extent in Chapter 3, but it was felt that a more comprehensive intro-
duction was needed ic provide the needed background for Chapter 4. The reader already familier

with classifiers should find no surprises here.

Key issues in classifier construction include the architecture used, the encoding of the search
and solution spaces onto the genotype, and how selective pressure can be used to promote adaptive

learning. The reader is referred to Goidberg's book for a good introduction to these topics(22).

A short review of the developments in genetics-based classifier systems is provided in Appendix

B.1 Basic Classifiers

Classifier systems or, more simply, classifiers are rule-based systems that maintain a popu-
lation of prioritized rules chat “re when their condition field matches that of an incoming message
from the outside environment(35:173). The basic parts of a classifier are its input interface, a Mes-
sage List, a Rule List, and an Output Interface. Each of these components, and their interaction,

are described below.

The input interface provides the “eyes and ears” of the classifier system in that it fully defines
the perceived worid of the classifier system®. A set of detectors is used to convert input messages
from some outside representation to an internal encoding. This encoding typically takes the form
of a binary bit string (using the alphabet { 0, 1 }) called a message. The messages so produced
by the active detectors in the system enter their messages cnto the message list where they await

processing during the next classifying cycle. See Figure B.1 below.

I"Chiw iv not fully correct, since, as will be seen later, the clessifier systeny itself can supply inputs that look just
lixe thiose from the outside world and so act on them. However, it is correct enough for the current discussion.




Meossags List [ow—y Rule List
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Figure B.1 A Standard Classifier System.

The message list, in the simple case, now contains messages that are the same length (in bits)
as the condition strings in the Rule List. These conditions, which use a more complex alphabet
with three symbols: { 0, 1, # }. The first two are as in the messages and represent the binary
encoding. The third symbol represents the “don’t care” condition, meaning that a match is made
if the message has either a 0 or 1 in that bit position. Thus a single condition string (field) can

potentially match many messages at the same time.

The rules (also known as classifiers since they classify the input messages into categories or
concepts — see Chaptier 2) are composed of a set of one or more condition fields that form the “if”
part of the rule, and an acticn field that performs some action when the rule is fired. The condition
fields are generally the same size as the input :messages, and are of the same form, except for the
don't cares. The action field can be any size, but generally is also the same size as the messages,
for reasons detailed below. Thus the if-then rule

IF there is (a message from a detector) indicating food to the left,
THEN (by issuing an eflector message) tell the output interface to turn left.
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can be encoded as the classifier (rule)

ERER RHLO RRRE/RRAE RRRE RR11

where the 10 in the condition field (first string up to the s.ash (/) encodes the fact that there is
food to the left (in this example and encoding), and the 11 in the action field (the symbols to the
right of the slash) is the encoding used here to tell the output interface to turn left. Note that
the encoding used and the positions of the bits in the strings, as well as the string sises, are all

changeable and, in fact, can change while the system is executing.

Rules in the Rule List where all conditions match at least one message are candidates for
posting messages to the output interface. Many rules can be active at once (i.e. can fire simultane-
ously during a classifier cycle), but a limit is generally imposed to imit the use of ccinputational
resources, among other things?. Note that all condition fieilds must be matched by some message
for a classifier to become active. Thus if more than one condition field is used, these fields act
as the logical ANDing of matched classifications. Rule condition fields with don’t care bits, on
the other hand, act as logical OR constructs, allowing multiple possible messages to rnatch the
condition. When one throws in a negation operator, represented as a minus sign preceeding the
second condition field in the example below, then the resulting classifier system can be shown to
be computationally complete3(35:175).

001100##0, ~1###RRERHR / 000011182

One further note is necessary. The don’t care bits in the action act as “pass through” bits; i.e.
the bits in those positions of the message that matched the first condition field* appear in tho.
positions of the resulting action message. 'This allows the passing of information from the input of

the rule to the output. Thus the above message states

4These other things are discussed shortly.
3A negated classifier matches if NO message in the mesvage list matches it.
4By conventicn the first condition field is used, but any field might be used to provide the pase through bits.
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IF a message exiats on the Message I.ist that starta 001100 and ends with 0,
AND NO message exists on the Message List that starts with 1,

THEN generate the message string starting with 0000111 and ending with the last two

bits of the message that matched condition field one.
In simpler applicatione that don’t require ruie chaining, such as stimulus-response systems, the
action field need not be of any particular sige, or even in a binary form. Learning to predict the

output of an unknown boolean function given iis inputa is one example of such an application(22).

Rules that fire can either send a message to the output interface to activate an effector to
change some aspect of the environment, or they can generate an “internal” message that is placed
on the input Message List to be matched against the next cycle. There is no difference between
these two types of messages (in the general case), except in the encoding (specific bit patterns are
matched by each effector interface just like each rule has at least one condition field that must be
matched against a message in the message List before the rule can fire). This feedback of messages
back on to the message list allows the system to “remember” a message from one cycle to the
following cycle. This is important since what is really being passed onward to the next cycle is the
fact that a particular concept was recognized by the system on the previous (now current) cycle.

This use of messages is looked at more closely when rule chains are discussed below.

B.2 Strength, Specificily, and Default Heirarchies

When many rules match, which rules to fire is determined by a competition (auction) based
on the bids of the rules. This bid can be based on many factors, including the rule’s strength (as

determined via some credit allocation mechanism (discussed next)) and its specificity.

A rule’s specificity is a measure ¢ how specific a rule is and is generally related to the number
of “don’t care” bits in the rule. Specificity for a rule with multiple condition fields is usually taken
as the average specificity of the conditions. Thus

specificity = (S(cendi) + S(cond?2) / (total bits_in_all_conditions)
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where S(cond) is the totai number of 1's and 0’s in the condition (i.e. bits :hat are not #). For
not-match conditions, S is the number of #'s in the field, since these restrict matching to more

specific bit strings.

Rules that have a higher sp cificity tend to match more specific conditions in the environment
(via the detector messages), while those with lower specificity match more environmental states.
This can lead to default hierarchies where a set of rules handle differing levels of specificity. For
example, for the rules

Rule 1: R### 4401 11#% / action 1

and
Rule2: 0011 0101 1110 / action 2

the first rule matches more cases (states) than the second. If Rule 2 produces higher bids in this
situation, theu action 2 will get selected when Rule 2 applies, but will allow Rule 1’s action 1 to
execute when it doesn’t. If we translate the above rules to mean:

Rule 1: If (the light is yeilow) then (slow to a stop)

and
Rule 2: If (the light is yellow) and (in hurry) then (speed up)

then, if the more specific condition is met, we exccute action 2, else we use action 1. This handling
of exceptions is the key to default hierarchies and allows concepts to be represented in & minimum

of rules. Specifity is generally used in generating the bids of classifiers, as discussed below.

B.§8 Credit allocation in clascifiers

In a sense, the credit allocation algorithms are learning algorithms since they adaptively
adjust the firing salience of rules so that the rules that best categorize a particular concept seen
by the system get first crack at later presentations of the concept. However, since no new rules
directly result from the credit allocation mechanisms, we define the discovery operators to be those

operators that directly add and remove rules from the population.



The idea behind credit allocation or the distributing of payoff received by one classifier to
others, ia to increase the strengths of rules that act as stage sctiers. Stage sctters are rules whose
actions set up conditiors for other rules to fire. Proper credit allocation can lead to chains of rules

that fire in adapted sequences in synch with the demands of the environment.

The £m buckei brigade algorithm is one method of handling the credit assignmen? task and
is used with the majority of classifier systems tcday(72, 3). The bucket brigade uses an anaiogy to
a Bervice economy to pasa payment back to immediately preceeding rules that allowed the current
rule to fire(36:72). If a rule makes a profit (receives a payoff from the environmnet), it passes part
of this payment to the rules (or detectors) respensible for producing tiie messages that allowed it
to be activated. Actually, the algorithm is implemented using a system of taxes and payments such

that a minimal amount of information is needed to properly allocate strength.

Bucket Brigade. The bucket brigade operates as follows(’9)

¢ Each cycle, each classifier is matched againat the messages on the message list. Those that
match post a bid (a fraction of their total fitness) as a payment to participate in the auction
to follow. This bid is subtracted frorn the fitness of the classifier and divided among the
detectors and rules that produced the messages that allowed the classifer to fire. Those
receiving payment add it to their total fitness.

e If the rule then receives payment from eitlier the environment (for & “useful” action) or from
other rules that fire later, this pyament is added to this rule’s total fitness. If no paymeut is
received, then the rule is assumed to have not generated any useful message this cycle and

therefore its total fitness ends up reduced by the amount of the bid.

Note that rules that never generate any useful action eventually “starve” in this approach, where
as those that at least occasionally generate useful messages reach a fized poini (in a static situation)

that ceflects the average of the payments received times a facior dependent or the fractien bid.

This value approaches:
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Sh’ = (R -+ P)/(k * BidRatio)
where R is the average rewards received (per activation) by the rule, P is the average of payments
received, % is a constant and BidRatio ie the fraction of the total strength bid each time the

classifier is activated.

Note that the actual fixed point depends on the average number of rules that use the classifier’s

generated messages® and on the number of rules that must be paid off®.

The bidding process can be further modified by adding various tazes to the bidding process.
For instance, in the operation of the eystem, rules may be generated (via the discovery algorithms
discussed later) that never bid but never match any messages. These classifiers would remain ic
the rule population taking up space and (assuming a limited rule list size) would take up valuable
rule space. A head tar can be used to take a very small fraction of the total fitness away from
all classifiers each cycle, thua eventually dropping the fitness of these rules to a point where the

discovery algorithms will look at them for replacement by new rules they generate.

Another problem that arises is8 when many rules fire at once, but only a limited number of
actions can be accomplished in one cycle. In this case a competition (auction) can be held to choose
the rule that will generate the action for that round. In this case the non-producing rules those
that imatched but lost the competition) can either have their bid taken subtracted (and distributed)
or just be removed from the match list as if they hadn’t bid. Both approaches are possible can be

used.

Yet another problem is what to do about detector messages. These inessages do not come
from other rules, since they are generated by the environmental interface, and so paying this source
effectively removes credit (fitness) from the rule population, and away from rules that generated

messages. Some systems (such as CFSC-1) allow the detectors to receive & smalier fraction of

5In the general case classifiers can generate many messages on each aciivstion. In practice, however, only one
n essmge per activation in allnwed to prevent one classifier from "taking over” the ule population.
SIf a fu!l bid fraction is given to each message source. Another alternative is to divide the bid among the different

sources,
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the bid (down to 0 %) to promote rules that generate useful messages. However, the use of this
type of controlled distribution must be locked at carefully, sir: = this transfer of payment promotes
internal generation of stimulus at the expense of triggering off of environmental stimulus. An
alternative (and the one chosen by the PPLS implementation discussed later) is to prevent rules
from generating such hallucination rules that mimmic detector messages. This is done by tegging

messages as to their source and is looked at more below.

The taxes can be further modified to favor stronger (more fit) or weaker rules when both are
competing for the right to post messages. One way is to take the bid of each rule and raise it to
some power BidPower. If BidPower is greater than one, then above average fitness rules” generate
greater effective bids and below average rules generate bids lower than they normally would. The
opposite happens when BidPowcr is less than one. In the limiting case where Bid Power is actually
gero, then selection will be random, with strength having no effect on the effective bid. BidPower
is set to 1.0 in most systems. Note thai each tax can have a BidFower, allowing great versatility

in how rules are credited.

The bucket brigade is not without troubles, however. Many modifications to the taxing
structure (some noted previously) are generally needed to build chawns of rules that can handle
time sequences of behavior®. Since payment is awarded on an incremental basis and is only a
fraction of the average a source’s fitness, rules farther back in a chain tend to receive a smaller and
smaller part of the reward. This io because the reward is generally divided between many producers
at each time step, and each rule only gets part of it. Thus the reward gets spread thinner aad
thinner as each rule in the chain pays to not only the previous rule in the chain, but any other

rules active at that point in the chain. Bridging classifiers, or rules that trigger on the reward and

TFor simplicity, the bids arc generally normalined by the average itness of the rule population Thus the bid of
a classifier is actually Mid = (strength ! population,trength)U*4Fe=cr < BidRatic. This bid can be mudified by
multiplying the strength by the spea ficity of the rule .o promote default hierarch.y formation. Thus bid : (strength
" apeaificity / pop\dati(m.trcngth)""”"'" * BidRatw Note that only strength * BidHatio 1s subtracted from
the rule as the actual tax.

8 Chains are discusred momentarilly
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pass payment back to the beginning of the chain, can develop tec alleviate part of this problem(58).
However, such rules don’t easily forni in practice® and better mechanisms may be needed to allow

chains to form easily and paturally (i.e. on their own).

In summary, the bucket bLrigade provides an incremental (time difference) method of credit
allocation that requires no long-term tracking of rule activations to be effective. Through a sequence
of taxes and payments, rules gravitate to steady-state values of fitness proportional to their role
in allowing the agent to reach a payoff state. To date this is the most used method to handle

the credit allocation problem in standard classifiers!® and is the method used in the PPLS system

addressed later in Chapter 4.

Other credit allocation methods. Other methods of credit allocation were addressed in Chapter
2 and are used in many systems. For example, a profit sharing mechanism can be used where the
fitnesses of rules are only modified at the end of an epoch (usually defined as the cycle where a
reward is received). This type off approach was used by Holland and Reitman in the original CS-1
system and later Grefenstetie used a modified version he termed a Proiit Sharing Plan (PSP)(26).
This method requires the tracking of all rules that have been active during the epoch. When
payment is received, it 1s distributed to all rules that were active and so assumed to have some say
in the outcome leading to the received payment. Generally, many trials are needed in such systems
to distribute payment fairly to all rules, since both “good” (effective) and “bad” (disruptive) rules
receive a share of the payment, regardless of their function in getting it. Many trials allows rules

that don’t contribute the chance not to fire and eventually lose fitness and fail to bid at all.

* Thia might be becauae of & lack of cvolutionary pressure forcing such bridges to form. The likelyhood that a rule
would develop that triggers offl a specific rule earlier in a chain and is active (bidding) during the payment of reward
is rather low, vnless a situation exists that keeps the rule active throughout the epoch. But in this case the epoch
must have some defining signature (partial state representation) th.at the rule can detect and match against (such as
e bit in & detector message structure indicating that an enemy is being evaded). Note also that the cxistence of such
bridging rules remove strength from the other rules actually deing the work (producing effective messages) during
the epoch.

19Pitt aystenw, since they use an off-line epoch-based spproach at interacting with the environment, tend to use
other allocation aethods. See Lielow
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Another problem with this approach is the need to determine when au epoch starts and
ends. The end is usually assumed to be when payment is received, but this doesn’t account for
incremental payiments that may be received along the way to reaching soine goal state. The start
is more difficult to pin down, since it is not always cbvious when the actions that iead to a gca!
actually started. For these reasons, this method is usually only used in aystems that can discern
a distinct start and end to the learning period, such as those learning a specific maneuver for a
controlled aircraft, viven a specific set of (possibly varying) starting conditions but a specific goal

(fitness measure).

B.4 Support and Actions

Actions in a classifier system can either be direct consequences of a ruie firing, such as is done
in many other rule-based systems, or can be indirectly triggered via the generation of messages
that direct them. This latter approach is used in the standard classifier system of Holland(36) and

is described here.

In this approach, the environment is manipulated by the classifier system via a set of effectors
which can be considered subagents triggered by system messages that perform specific tasks in the
environment. Rules trigger effectors by generating effector messages thai match the conditions
required for the effector to fire. Feedback from the effector (if any) comes back ‘o the system via

the deteciors.

When multiple messages reach an effector simultaneously, the effector must determine which
of the proposed actions it is to do. This process of effector resolution is handled by building up
support for each action tased on the intensities (strengths) of the messages that are received. Each
receiv:d message has an inteneity based on either the bid of the rule that posted it or, in the case
of detector-generated meseay -, the value supplied by the detector. (Detector intensities generally

indicate the “urgency” of the message, as determined by the environment.) The system adds th




support for each action. The action that has the most support is chosen as the action to perform

on that cycle.

B.5 Chains an” lags in classifiers

Tags are sections of condition and action fields resarved for representing context information.
A tag is a bit pattern that prevents a condition from firing unless the bits in the message match
those of the tag field. Tags essentially divide the rule population into groups that can address

subtaske of a problem.

Chasns form when one rule’s action ia tagged to match the tag in the condition field of ancther
rule. The tag could be a partial match, requiring other conditions to be met before the second rule
could fire, or it might be a full match of the field leading to a reflex type of chaining Thuse are

both shown below (spaces added for clarity):

Message: 1010 1001

Rule 1: #E#% 1001 / #### 0111 generates message: 1010 0111

Rule 2: 1010 0111 / 1000 1111 triggers effector: 1001 with action 1111
Rule 3: 1010 1##1 / 0000 1111

Rula 4: 0000 1111 / 1000 1110 triggers effector: 1000 with action 1110

In the first rule subset, 0111 can be considered the tag. In the second, the entire string 1000 1111

acts as the tag.

If Rule 1 fires, it will generate a message dependent on the messages it matches. In this
case, the message it generates matches Rule 2’s corditions and so Rule 2 generates a message that
activates an effector that responds to the 1000 prefix.

In the second example, Rule 3 fires and generates the fully specified string 00001111, This
matches the reflex rule, Rule 4, and it triggers effector 1000 with action code 1110. This is a reflex
response since firing Rule 3 on one cycie guarantees (barring rule competition) that Rule 4 will fire

the following cycle.



Chains provide classifiers a way to represent seqences of actions that lead to a goal (payoff).
Although they have been shown to form in some situations(63), discovering them may take many
cycles (and many trials and errors). Because of this, other methods have been looked at to generate

seqiences of actions to address environmental needs, which we look at later in this chapter.

B.6 Review of non-discovery classifier operation

To summarisze, a classifier eystem steps through the foilowing operations each cycle:

1. Read in the messages from environmental detectors and place them on the message list. Note

that other messages generated by classifiers the previous cycle may already be on the measage
list.

2. Perform a match of all rule conditions tc the messages on the message list. Mark those that
match as eligible for producing action messages. Generate Lids for all marked rules. Apply

any bid taxes.

3. If too many messages would be generated, conduct an auction based on rule bids and select
the rules to fire. Mark the winners as producer rules and generate action messages. Apply

any producer taxes.

4. Perform effector resolution so that all actions generated are consistent with each other. Rules

that have their actions voided are remarked as non-producers.

5. Execute the actions by sending the messages to the eifector interface. Triggered effectors

perform the specified action in the environment.

€. Clear the message list and post non-effector messages to the new list to match against on the

next cycle,
7. Apply any head tax to all population members.

8. Repeat the cycle.
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This lcop continues until the system is stopped by the user or the system “die.” (is no longer

considered active in the eavironment).
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Appendic C. A short kistory of classifier systems

This Appendix presents a short history of classifier systems. We 4o this te provide the reader
with the basic issues of classifier systems in a more or less time sequencial form. Though a historical
nerspective, many new concepts are introduced. The reader should be able to skim this sectior,
however, since those ideas used later are mostly redescribed when again used. Most of the material

here is from tle article of Wilson and Goldberg(82).

C.1 Historical Review

Classifiers have their beginnings in the early work of John Holland. In his paper “Processing
and Processors for Schemata,” published in 1971, he started to progressively modify the classifier
concept and its structure until, in his 1975 hallmark book “Adaptation in Natural and Artificial
Systerns,” he presented a rule-based system known as the broadcast language{33:141). This precur-
sor to classifier systems had most of the qualities of classifiers as they are known today, but with the
differnce that a “broadcast unit” (the equivalent of a rule or classifier) could directly create other
broadcast units, while classifiers cannot(35:172). Classifiers evolved in Holland’s 1976 works and
reached a somewhat standard form in his 1980 “Adaptive Algorithms for Discovering and Using

General Patterns in Growing Knowledge-Bases.”

The first classifier system was the Cognitive Systermn One (CS-1) developed by Holland and
Reitman and published in 1978. This system was able to run a simulated one-dimensional mage
with payoff at the two ends. Each end had a different resource (food at one end, water at the
other) and the system had to learn which way to step depending on its current needs(75:139).
Instead of the bucket brigade (addressed in the next chapter), the system divvied cut reward to
those classifiers that had been active during an epoch, which ended when a resource was reached

and consumed. CS-1 successfully demonstrated learned behavior within this environment.
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Steven Smith took a different approach in his dissertation of 1980 entitled *A Learning System
Based on Genetic Adaptive Algorithms”(75). In what was to become the representative “Pitts-
burgh” approach, his system atripped away the credit assignment mechanism of CS-1 and, instead,
used genetic operations on strings encoding entire ruie sets to build his LS-1 (Learning System
One) system. By competing rule sets against each other, he was able to genetically search out
complex patterns of behavior via evolutionary pressure. He tested his system against Waterman's
poker playing task (one specific version that had some learning capability) and showed remarkable
success by showing that his system could learn by doing and, after a time, consistently beat Wa-
terman’s more complex! system. As with most classifier systems, a feedback function providing
a measure of success or failure was the only link Smith used to judge the fitness of the system’s

actions.

This split from normal thought lead to the two camps of classifier theory, they being the
“Michigan” camp and the “Pitt” camp after the locations (University of Michigan and University

of Pittsburgh) that they were first developed at. More on this later.

Lashon Booker, in his 1982 dissertation based on the standard classifier approach, addressed
many of the issues that were becoming apparent in classifier systern research(4). He argued that the
previous policy of matching condition fields “all or nothing” lead to much genetic material being
wasted in those rules that are almost perfect matches. He shows that changing the match score
to account for close matches (based on the number of alleles (bit positions) that masched) allows
his aystem to better adapt to his environment. He also introduced a restricted-mating policy where
genetic operations sclected from those classifiers that were active recently instead of the entire rule
population, and the payoff, when received from the environment, was distributed to the active
classifiers. The idea is that, assuming the system is trying to address a specific environmental

state, that the active classifiers represented a closer approximation to the classifiers needed than

'In requiring much more feedback from the environment
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any others in the rule list. This type of restriction leads to clusters of classifiers that fill niches
in the environment. Whenever a state was encountered that no classifier sufficiently matched, the

system would draw from the entire population and try to form a new niche(4).

Goldberg in 1983 applied a classifier system to the dynamic control of a gaa pipeline(22). His
system showed the emergence of defaull heirarchies, levels of general and specific rules that allow
a task to be specified more concisely. He also introduced the noisy auction(82) as an alternative
to roulette wheel selection where rules are selected for mating based on the probability formed by

dividing their sirength (a measure of the rule’s utility) by the total strength of the rule population.

Wilson in 1985 presented another use of the standard classifier sysiem, that of controlling an
artificial animal (an animat) in a simple simulated environment. This is one of the first uses of
cover operatoss to create rules that fill gaps when no appropriate rule exists in the system. It is
also the first example of a bucket brigade-like algorithm operating under intermittent pagyoff (i.e.

when payoff only comes once in a while)(80).

Forrest in 1985 looked at the use of classifer systems in implementing a subset of the KL-
ONE semantic net language(20). She showed that symbolic representations can be supported and

implemented in classifier systems. However, it is still unclear whether such structures can evolve

usefully under genetic pressure.

Rick Riolo has addressed many of the problems with classifier systems, including long chain
development (where a number of rules linked by action messages fire one after another to generate a
sequence of behaviors) and default heirarchy development(63). He showed that bridging classifiers
can be used to carry strength down a classifier chain, as Holland predicted in 1685. He also
developed a “standard” classifier systern known as CFS-C (Classifier System in “C”), which is now

available aa public domain(59).

Wilson in 1987 publishel work on & system known 28 BOOLE that was a single-step classifier

(no rule chaining) and was able to classify boolean logic functions. He also demonstrated parametric
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control of some system parameters. Sen in 1988 later modified this system to achieve learning rates

better than connectionist networks on the same problem(82).

Robertson and Riolo in 1988 investigated the letter sequence problem in detail. This problem
involves the guessing of what letter will come next, given a previously seen set of letters. By
usiug iriggered coupling of rules and other cover operators, they were able to build chains that
showed the use of internal messages (messages from one classifer’s action that are matched by a
condition of anothar rule the next cycle) to successfully predict letters. Though similar +o the
creale mechanism that Wilson used in the 1985 Animat problem, much ground-breaking analysis
and many obserations were provided. They also did some work with population sizing on this
problem. Problems with using the GA in creating (discovering) new rules was also noted, and
their work confirmed many of the problems noted by Booker earlier, as well as others involving the

various taxes posed on rules to limit their unlimited propagation(58).

Wilson in 1988, locked at several aspects of bidding and payoff, and found that a problem with
rules overgeneralizing could be avoided by removing the specificity bias (a bias toward more general
rules, i.e. those with more wild cards) from the bids of classifiers. This fixed many probletns, but
forced the restricting of the bid payments to only those bidding ruies that supported (agreed with)

the winning rule(82).

Grefenstette in 1988 presented the first hybrid system that used compouents from both the
“Michigan” and “Pitt” approaches. In his system Rudi, and later in his Samuel systemn, he used
basically a Pitt approach rule set processing system based on a modified version of his Genesis
genetic algorithm system. In addition, he used a credit allocation mechanism to track the utility
of the rules in each rule set. Instead of the bucket brigade, however, he used a version of the
epoch-based aystem used by Holland and Reiman in their CS-1 system, which he named a profit
sharing plan (PSP). He showed that this system better distributes an intermittant reward than the

bucket brigade algorithm in his limited two-dimensional state space example problem. The credit
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assigmentis arc then used to cluster rules that tend to work together cleser together in the rule
strings, thus increasing the likelyhood that the cluster of relatea rules would be transferred intact
by the crossover operator to the receiving offspring. The results were better in this environment

than those using a standard “Michigan” or “Pitt” system alone(26).

C.2 On-line versus Off-line performance

The on-going debate of on-line (incremental) verses off-line (batch) systems is routed in the

two approaches used to implement classifier systems: the Michigan and the Pitt approach?(12).

In brief, the CS-1 type of systems originally proposed by Holland avoid brittleness by simul-
taneously developing many alternative classifications for any particular concept and then choosing
between them probabilistically based on past performance. If at any time the most fit rule begins
to fail, it quickly loses fitness and the next alternative takes its place to be tried. Also, the genetic
algorithm can access and manipulate rules individualiy, based on each rule’s past performance,

allowing selective generation of potentially better rules.

The main weakness of this appreach is the lack of high-level guidance to place selective
pressure on the overall performance of the system. Without guidance these systems learn parts of
a problem but have problems with the big picture if it’s too much more complex than a simple
environment. Some methods have been derived to address this (see below) but the perfect fix has

yet to be found.

Pittsburgh systems, on the other hand, evolve entire sets of rules, with the selective pressure
aimed at overall performance. Though the rule sets may take much longer to evolve (since there is
typically no indication of which rules in the rule sets to concentrate on), once a rule set is created
that performs well, it generally performs well in all situations it was trained on. And if such training

involves a complex system, then the behavior this system requires will be learned.

2Gec Appendix A for more on the issues involved.



The negative aspects of Pitt systems include tueir slowness, since a population of entire ruie
seis must be evolved and tested each generation. And since the system learns the desired behavior
by processing & set of training examples in a batch fashion, the tendency to overtrain is strong
which, in turn, leads to brittleness (the not so graceful degradation of performance) when the
systern must perform outside the area it was trained in. The concepts of the training set ar:
learned, but not the concepts of the target systemi. And since each rule in the resultant rule set

may do a specific tagk, when this rule fails the system has nothing to fall back on.

Ag is discussed in Section 3.4, there are solutions to many of these disparencies; but each
generally has a cost. The choice of uystem to use still largely depends on the end results desired by

the user and what the user can tolerate.




Appendiz D, Volume I1

Volume II contains the following items and is not included in this published volume. These

materials can be obtained by email to:

lamont@afit.af.mil

D.1 Phased Pilot Learning System User Manual

This appendix includes a user manual for the Phased Pilot Learning System as well es for

the new features of the modified CFSC classifier eystem.

D.2 CFSC-1 User Manual by Rick Riolo

This appendix contains a copy of the CFSC-1 User Manual that comes with the public domain

version of tiis system.

D.8 Test Casea and Test Results

This appendix presents the detailed parameters and data of the tests in Cnapter 6 and presents
more detailed results than presented there. Other tests, such as with different discovery learning
operators and with the PDP-C srstem interface, are also presented here. Analysis of these tests is

included.

D.4 PPLS Source Code

This appendix contains the entire source code for the system, including the CFSC-1 package
of subroutines (as modified) and the interface code and the PDP-C Clips code. The code included
is sufficient to implement the test version of the system. All code may be available from the above

address. Al]l code is currently implemented for a Sun workstation environment running Unix,
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though the test version should be portable to other environments having access to an ANSI C

compiler. Access limitations may apply.
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